Abstract: The present disclosure relates to a photocurable polymer composition for 3D printing including: a UV-curable polyurethane oligomer; a photoinitiator; an oligomer; and a stabilizer. The photocurable polymer composition for 3D printing can produce a 3D printed product having excellent physical properties such as thermal properties, strength, elastic modulus and tensile elongation. In addition, the photocurable polymer composition can produce a 3D printed product which, even when the original shape thereof is deformed during use, can be restored to the original shape thereof.
Abstract: The present disclosure relates to a photocurable composition for 3D printing for producing a patient-specific splint or cast. The photocurable composition easily produces a splint or cast conforming to the patient's body shape using 3D printing and makes it possible to adjust the immobilizing force of the splint or cast. In addition, the present disclosure provides a patient-specific splint or cast using a photocurable composition for 3D printing, which may produce a splint or cast, which may provide a necessary degree of compression by adjusting the immobilizing force thereof and is attachable and detectable as needed.
Abstract: The present invention pertains to a photocurable composition for a 3D printer for producing a transparent orthodontic device. A photocurable composition for a 3D printer can be provided, which has excellent physical properties such as thermal properties, strength, elastic modulus, and tensile elongation, and when used in a patient-customized transparent orthodontic device, the orthodontic device can reduce the pain felt by patients and can enhance orthodontic correction effectiveness due to being closely fitted to the dental structure. Moreover, a 3D-printed transparent orthodontic device can be produced which can be restored to the original shape thereof even when deformed from use.