Patents Assigned to Great River Energy
  • Patent number: 9797598
    Abstract: The present invention relates to coal-fired power plants and flue gas emissions and more specifically, to controlling gaseous mercury emissions in the flue gas between two or more coal fired electric generating units within a contiguous power plant site to achieve environmental regulation limits for mercury emissions. This is accomplished by continuously adjusting the application rates of mercury oxidant, which is added to a coal feed to oxidize elemental mercury for improved mercury capturability and aqueous mercury precipitant (liquid), which is added to a scrubber liquor of a wet Flue Gas Desulfurization (FGD) unit to precipitate out oxidized mercury into solid form for improved capture and disposal.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: October 24, 2017
    Assignee: Great River Energy
    Inventors: Jared D. Pozarnsky, Joseph D. Flath, Jeffrey A. Jacobchick, Cory A. Koppang, Rodney N. Swanson, Lyle K. Lelm, Mark D. Natwick, Morris L. Hummel
  • Patent number: 9657943
    Abstract: Flue gas is a by-product of many energy and industrial plants and is typically emitted through a chimney stack. If the flue gas temperature in the chimney stack drops below the flue gas dew point, condensation of water vapor and acid gases ensues. These gases are very corrosive for chimney stacks designed to operate in a dry condition. The Flue Gas Reheat System of the present invention continuously and proactively manages flue gas chimney stack temperatures above the dew point in order to optimize emission control and effectuate energy efficiency improvements in industrial plants. Waste heat is harvested from the exterior surfaces of existing steam and pollution control equipment through conduction, convection and radiation. This heat is transferred to a working fluid. The working fluid is then directly mixed with the flue gas prior to the flue gas entering the chimney stack to raise the temperature of (or re-heat) the flue gas above its dew point to maintain a dry chimney stack condition.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: May 23, 2017
    Assignee: Great River Energy
    Inventor: Jared D. Pozarnsky
  • Publication number: 20140141381
    Abstract: The present invention harvests and utilizes fluidized bed drying technology and waste heat streams augmented by other available heat sources to dry feedstock or fuel. This method is useful in many industries, including coal-fired power plants. Coal is dried using the present invention before it goes to coal pulverizers and on to the furnace/boiler arrangement. Coal can be intercepted on current coal feed systems ahead of the pulverizers. Drying fuel, such as coal, is done to improve boiler efficiency and reduce emissions. A two-stage bed utilized in the process first “pre-dries and separates” the feed stream into desirable and undesirable feedstock. Then, it incrementally dries and segregates fluidizable and non-fluidizable material from the product stream. This is all completed in a low-temperature, open-air system. Elevation of fan room air temperature is also accomplished using waste heat, thereby making available to the plant system higher temperature media to enhance the feedstock drying process.
    Type: Application
    Filed: October 21, 2013
    Publication date: May 22, 2014
    Applicant: GREAT RIVER ENERGY
    Inventors: Charles W. Bullinger, Mark A. Ness, Nenad Sarunac, Edward K. Levy, Richard S. Weinstein, Dennis R. James
  • Patent number: 8651282
    Abstract: An apparatus for segregating particulate by density and/or size including a fluidizing bed having a particulate receiving inlet for receiving particulate to be fluidized. The fluidized bed also includes an opening for receiving a first fluidizing stream, an exit for fluidized particulate and at least one exit for non-fluidized particulate. A conveyor is operatively disposed in the fluidized bed for conveying the non-fluidized particulate to the non-fluidized particulate exit. A collector box is in operative communication with the fluidized bed to receive the non-fluidized particulate. There is a means for directing a second fluidizing stream through the non-fluidized particulate as while it is in the collector box to separate fluidizable particulate therefrom.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: February 18, 2014
    Assignee: Great River Energy
    Inventors: Mark A. Ness, Matthew P. Coughlin
  • Patent number: 8579999
    Abstract: The present invention harvests and utilizes fluidized bed drying technology and waste heat streams augmented by other available heat sources to dry feedstock or fuel. This method is useful in many industries, including coal-fired power plants. Coal is dried using the present invention before it goes to coal pulverizers and on to the furnace/boiler arrangement. Coal can be intercepted on current coal feed systems ahead of the pulverizers. Drying fuel, such as coal, is done to improve boiler efficiency and reduce emissions. A two-stage bed utilized in the process first “pre-dries and separates” the feed stream into desirable and undesirable feedstock. Then, it incrementally dries and segregates fluidizable and non-fluidizable material from the product stream. This is all completed in a low-temperature, open-air system. Elevation of fan room air temperature is also accomplished using waste heat, thereby making available to the plant system higher temperature media to enhance the feedstock drying process.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: November 12, 2013
    Assignee: Great River Energy
    Inventors: Charles W. Bullinger, Mark A. Ness, Nenad Sarunac, Edward K. Levy, Richard S. Weinstein, Dennis R. James
  • Patent number: 8523963
    Abstract: The present invention constitutes a heat treatment apparatus like a fluidized-bed dryer for heat treating a particulate material in a low temperature, open-air process. Preferably, available waste heat sources within the surrounding industrial plan operation are used to provide heat to the dryer. Moreover, conveyor means contained within the dryer can remove larger, denser particles that could otherwise impede the continuous flow of the particulate material through the dryer or plug the fluidizing dryer. This invention is especially useful for drying coal for an electricity generation plant.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: September 3, 2013
    Assignee: Great River Energy
    Inventors: Charles W. Bullinger, Mark A. Ness, Nenad Sarunac, Edward K. Levy, Anthony F. Armor, John M. Wheeldon, Matthew P. Coughlin
  • Patent number: 8372185
    Abstract: The present invention harvests and utilizes fluidized bed drying technology and waste heat streams augmented by other available heat sources to dry feedstock or fuel. This method is useful in many industries, including coal-fired power plants. Coal is dried using the present invention before it goes to coal pulverizers and on to the furnace/boiler arrangement to improve boiler efficiency and reduce emissions. This is all completed in a low-temperature, open-air system. Also included is an apparatus for segregating particulate by density and/or size including a fluidizing bed having a particulate receiving inlet for receiving particulate to be fluidized. This is useful for segregating contaminants like sulfur and mercury from the product stream.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: February 12, 2013
    Assignee: Great River Energy
    Inventors: Charles W. Bullinger, Mark A. Ness, Nenad Sarunac, Edward K. Levy, Richard S. Weinstein, James R. Dennis, Matthew P. Coughlin, John M. Wheeldon
  • Publication number: 20120067789
    Abstract: The present invention harvests and utilizes fluidized bed drying technology and waste heat streams augmented by other available heat sources to dry feedstock or fuel. This method is useful in many industries, including coal-fired power plants. Coal is dried using the present invention before it goes to coal pulverizers and on to the furnace/boiler arrangement to improve boiler efficiency and reduce emissions. This is all completed in a low-temperature, open-air system. Also included is an apparatus for segregating particulate by density and/or size including a fluidizing bed having a particulate receiving inlet for receiving particulate to be fluidized. This is useful for segregating contaminants like sulfur and mercury from the product stream.
    Type: Application
    Filed: October 10, 2011
    Publication date: March 22, 2012
    Applicant: GREAT RIVER ENERGY
    Inventors: Charles W. Bullinger, Mark A. Ness, Nenad Sarunac, Edward K. Levy, Richard S. Weinstein, Dennis R. James, Matthew P. Coughlin, John M. Wheeldon
  • Patent number: 8117764
    Abstract: A control system for controlling the utilization of heated waste streams for fluidizing particulate matter such as coal in a fluidizing bed dryer. The control system includes a number of graphic user interfaces that allow an operator to more easily monitor and/or control the various regulator devices. The control system controls coal handling or transportation, fluid handling or flow, and the discharge of discarded or separated coal from the dryer.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: February 21, 2012
    Assignee: Great River Energy
    Inventors: Mark A Ness, Matthew P Coughlin, John M Wheeldon, Adam M Johnson
  • Patent number: 8062410
    Abstract: The present invention harvests and utilizes fluidized bed drying technology and waste heat streams augmented by other available heat sources to dry feedstock or fuel. This method is useful in many industries, including coal-fired power plants. Coal is dried using the present invention before it goes to coal pulverizers and on to the furnace/boiler arrangement to improve boiler efficiency and reduce emissions. This is all completed in a low-temperature, open-air system. Also included is an apparatus for segregating particulate by density and/or size including a fluidizing bed having a particulate receiving inlet for receiving particulate to be fluidized. This is useful for segregating contaminants like sulfur and mercury from the product stream.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: November 22, 2011
    Assignee: Great River Energy
    Inventors: Charles W. Bullinger, Mark A. Ness, Nenad Sarunac, Edward K. Levy, Richard S. Weinstein, Dennis R. James, Matthew P. Coughlin, John M. Wheeldon
  • Patent number: 7987613
    Abstract: A control system for controlling the utilization of heated waste streams for fluidizing particulate matter such as coal in a fluidizing bed dryer. The control system includes a number of graphic user interfaces that allow an operator to more easily monitor and/or control the various regulator devices. The control system controls coal handling or transportation, fluid handling or flow, and the discharge of discarded or separated coal from the dryer.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: August 2, 2011
    Assignee: Great River Energy
    Inventors: Mark A Ness, Matthew P Coughlin, John M Wheeldon, Adam M Johnson
  • Patent number: 7540384
    Abstract: An apparatus for segregating particulate by density and/or size including a fluidizing bed having a particulate receiving inlet for receiving particulate to be fluidized. The fluidized bed also includes an opening for receiving a first fluidizing stream, an exit for fluidized particulate and at least one exit for non-fluidized particulate. A conveyor is operatively disposed in the fluidized bed for conveying the non-fluidized particulate to the non-fluidized particulate exit. A collector box is in operative communication with the fluidized bed to receive the non-fluidized particulate. There is a means for directing a second fluidizing stream through the non-fluidized particulate as while it is in the collector box to separate fluidizable particulate therefrom.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: June 2, 2009
    Assignee: Great River Energy
    Inventors: Mark A Ness, Matthew P Coughlin, Edward K Levy, Nenad Sarunac, John M. Wheeldon
  • Patent number: 7275644
    Abstract: An apparatus for segregating particulate by density and/or size including a fluidizing bed having a particulate receiving inlet for receiving particulate to be fluidized. The fluidized bed also includes an opening for receiving a first fluidizing stream, an exit for fluidized particulate and at least one exit for non-fluidized particulate. A conveyor is operatively disposed in the fluidized bed for conveying the non-fluidized particulate to the non-fluidized particulate exit. A collector box is in operative communication with the fluidized bed to receive the non-fluidized particulate. There is a means for directing a second fluidizing stream through the non-fluidized particulate as while it is in the collector box to separate fluidizable particulate therefrom.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: October 2, 2007
    Assignee: Great River Energy
    Inventors: Mark A. Ness, Matthew P. Coughlin