Abstract: The process includes pretreating the biomass with a first basic solution such as sodium hydroxide and mechanically altering the fibers to provide a fluidized biomass. The fluidized biomass is then subjected to high frequency pulses and shear forces without denaturing the individual components of the biomass. The biomass is then subjected to compressive force to separate a first liquid fraction from a first fractionated biomass. The first fractionated biomass may again then be subjected to the same high frequency pulses and shear forces as previously, particularly if there are hemicellulose and/or sugars still present in the first fractionated biomass. Compressive forces are used to separate a second liquid fraction from a second fractionated biomass. The second fractionated biomass is subjected to oxidation such as with hydrogen peroxide at a pH of 8 to 12.
Abstract: A process for fractionating a plant material to provide isolated extractives, the process includes pretreating the plant material to provide a fluidized plant material, subjecting the pretreated fluidized plant material to high frequency pulses and shear forces without denaturing bioactive aspects of one or more components of the plant material to provide a first liquid fraction having extractives to be isolated and a first fractionated plant material, separating the first liquid fraction having extractives from the first fractionated plant material, and isolating extractives from the first liquid fraction.
Type:
Grant
Filed:
November 30, 2018
Date of Patent:
April 20, 2021
Assignee:
Green Extraction Technologies
Inventors:
Melvin Mitchell, James Etson Brandenburg
Abstract: The present invention provides a process for fractionating biomass into its individual components. The process includes pretreating a biomass which may include mechanically altering the fibers and/or contacting the biomass with a solvent to provide a fluidized biomass. The pretreated fluidized biomass may be subjected to high frequency pulses and shear forces without denaturing one or more components of the biomass to provide a first liquid fraction and a first fractionated biomass. The first liquid fraction may then be isolated or separated from the first fractionated biomass. The biomass may be separated, isolated or purified into lignin, extractives for use in pharmaceuticals or nutraceuticals, cellulose, hemicellulose, and other sugars and proteins.
Abstract: A biomass fractionation apparatus includes a vessel having a processing chamber, an inlet configured to receive a biomass into the processing chamber, and an outlet configured to discharge processed biomass from the chamber. A bed plate is movably positioned within the processing chamber and includes a plurality of elongated fins extending outwardly therefrom in substantially parallel spaced-apart relationship. A cylindrical rotor is rotatably secured within the processing chamber in adjacent, spaced-apart relationship with the bed plate. The rotor has a plurality of elongated blades extending radially outwardly therefrom in circumferentially spaced-apart relationship. Upon rotation of the rotor, the blades are configured to accelerate a biomass within the processing chamber against the fins of the bed plate and to cause the bed plate to pulsate against the rotor.
Abstract: A biomass fractionation apparatus includes a vessel having a processing chamber, an inlet configured to receive a biomass into the processing chamber, and an outlet configured to discharge processed biomass from the chamber. A bed plate is movably positioned within the processing chamber and includes a plurality of elongated fins extending outwardly therefrom in substantially parallel spaced-apart relationship. A cylindrical rotor is rotatably secured within the processing chamber in adjacent, spaced-apart relationship with the bed plate. The rotor has a plurality of elongated blades extending radially outwardly therefrom in circumferentially spaced-apart relationship. Upon rotation of the rotor, the blades are configured to accelerate a biomass within the processing chamber against the fins of the bed plate and to cause the bed plate to pulsate against the rotor.