Patents Assigned to Greyrock Technology LLC
-
Patent number: 12241026Abstract: The present invention describes improved processes for the synthesis of high value chemical products from low carbon syngas. In one aspect, a process for the production of chemicals is provided. The process comprises the following: feeding a feedstock comprising hydrogen and carbon monoxide to a liquid fuel production reactor, wherein the liquid fuel production reactor comprises a catalyst, thereby producing a product, wherein the product comprises a liquid phase and a solid phase, and wherein the liquid phase comprises C5-C23 hydrocarbons and oxygenated hydrocarbons, and wherein the solid-phase comprises C24-C45 aliphatic hydrocarbons, and wherein the liquid phase is between 51 percent by volume and 99 percent by volume of the product.Type: GrantFiled: October 6, 2023Date of Patent: March 4, 2025Assignee: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle, Orion Hanbury
-
Patent number: 12152203Abstract: The present invention generally relates to improved catalysts that provide for reduced product contaminants, related methods and improved reaction products. It more specifically relates to improved direct fuel production and redox catalysts that provide for reduced levels of certain oxygenated contaminants, methods related to the use of those catalysts, and hydrocarbon fuel or fuel-related products that have improved characteristics. In one aspect, the present invention is directed to a method of converting one or more carbon-containing feedstocks into one or more hydrocarbon liquid fuels. The method includes the steps of: converting the one or more carbon-containing feedstocks into syngas; and, converting the syngas to one or more hydrocarbons (including liquid fuels) and a water fraction. The water fraction comprises less than 500 ppm of one or more carboxylic acids.Type: GrantFiled: April 18, 2022Date of Patent: November 26, 2024Assignee: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Patent number: 11994345Abstract: The present invention describes an improved process for the commercial scale production of high-quality catalyst materials. These improved processes allow for production of catalysts that have very consistent batch to batch property and performance variations. In addition these improved processes allow for minimal production losses (by dramatically reducing the production of fines or small materials as part of the production process). The improved process involves multiple steps and uses calcining ovens that allow for precisely control temperature increases where the catalyst is homogenously heated. The calcining gas is released into a separate heating chamber, which contains the recirculation fan and the heat source.Type: GrantFiled: October 4, 2022Date of Patent: May 28, 2024Assignee: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Publication number: 20240084201Abstract: The present invention describes improved processes for the synthesis of high value chemical products from low carbon syngas. In one aspect, a process for the production of chemicals is provided. The process comprises the following: feeding a feedstock comprising hydrogen and carbon monoxide to a liquid fuel production reactor, wherein the liquid fuel production reactor comprises a catalyst, thereby producing a product, wherein the product comprises a liquid phase and a solid phase, and wherein the liquid phase comprises C5-C23 hydrocarbons and oxygenated hydrocarbons, and wherein the solid-phase comprises C24-C45 aliphatic hydrocarbons, and wherein the liquid phase is between 51 percent by volume and 99 percent by volume of the product.Type: ApplicationFiled: October 6, 2023Publication date: March 14, 2024Applicant: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle, Orion Hanbury
-
Patent number: 11891579Abstract: The present invention describes improved processes for the synthesis of high value chemical products from low carbon syngas. In one aspect, a process for the production of chemicals is provided. The process comprises the following: feeding a feedstock comprising hydrogen and carbon monoxide to a liquid fuel production reactor, wherein the liquid fuel production reactor comprises a catalyst, thereby producing a product, wherein the product comprises a liquid phase and a solid phase, and wherein the liquid phase comprises C5-C23 hydrocarbons and oxygenated hydrocarbons, and wherein the solid-phase comprises C24-C45 aliphatic hydrocarbons, and wherein the liquid phase is between 51 percent by volume and 99 percent by volume of the product.Type: GrantFiled: April 18, 2022Date of Patent: February 6, 2024Assignee: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle, Orion Hanbury
-
Publication number: 20230340334Abstract: The present invention is directed to unique processes, catalysts and systems for the direct production of liquid fuels (e.g., premium diesel fuel) from synthesis gas produced from natural feedstocks such as natural gas, natural gas liquids, carbon dioxide or other similar compounds or materials. In one aspect, the present invention provides a process for the production of a hydrocarbon mixture comprising the steps of: a) reducing a catalyst in-situ in a fixed bed reactor; b) reacting a feed gas that contains hydrogen and carbon monoxide with the catalyst to produce a hydrocarbon product stream, wherein the hydrocarbon product stream comprises light gases, a diesel fuel and a wax, and wherein the diesel fuel fraction is produced without requiring the hydroprocessing of wax, and wherein the catalyst comprises one or more metals deposited on a gamma alumina support at greater than about 5 weight percent, and wherein platinum or rhenium is included on the support in an amount ranging from about 0.Type: ApplicationFiled: May 23, 2023Publication date: October 26, 2023Applicant: Greyrock Technology, LLCInventors: ROBERT SCHUETZLE, DENNIS SCHUETZLE
-
Patent number: 11702599Abstract: The present invention is directed to unique processes, catalysts and systems for the direct production of liquid fuels (e.g., premium diesel fuel) from synthesis gas produced from natural feedstocks such as natural gas, natural gas liquids, carbon dioxide or other similar compounds or materials. In one aspect, the present invention provides a process for the production of a hydrocarbon mixture comprising the steps of: a) reducing a catalyst in-situ in a fixed bed reactor; b) reacting a feed gas that contains hydrogen and carbon monoxide with the catalyst to produce a hydrocarbon product stream, wherein the hydrocarbon product stream comprises light gases, a diesel fuel and a wax, and wherein the diesel fuel fraction is produced without requiring the hydroprocessing of wax, and wherein the catalyst comprises one or more metals deposited on a gamma alumina support at greater than about 5 weight percent, and wherein platinum or rhenium is included on the support in an amount ranging from about 0.Type: GrantFiled: November 10, 2016Date of Patent: July 18, 2023Assignee: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Patent number: 11493274Abstract: The present invention describes an improved process for the commercial scale production of high-quality catalyst materials. These improved processes allow for production of catalysts that have very consistent batch to batch property and performance variations. In addition these improved processes allow for minimal production losses (by dramatically reducing the production of fines or small materials as part of the production process). The improved process involves multiple steps and uses calcining ovens that allow for precisely control temperature increases where the catalyst is homogenously heated. The calcining gas is released into a separate heating chamber, which contains the recirculation fan and the heat source.Type: GrantFiled: December 4, 2019Date of Patent: November 8, 2022Assignee: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Publication number: 20220243131Abstract: The present invention generally relates to improved catalysts that provide for reduced product contaminants, related methods and improved reaction products. It more specifically relates to improved direct fuel production and redox catalysts that provide for reduced levels of certain oxygenated contaminants, methods related to the use of those catalysts, and hydrocarbon fuel or fuel-related products that have improved characteristics. In one aspect, the present invention is directed to a method of converting one or more carbon-containing feedstocks into one or more hydrocarbon liquid fuels. The method includes the steps of: converting the one or more carbon-containing feedstocks into syngas; and, converting the syngas to one or more hydrocarbons (including liquid fuels) and a water fraction. The water fraction comprises less than 500 ppm of one or more carboxylic acids.Type: ApplicationFiled: April 18, 2022Publication date: August 4, 2022Applicant: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Patent number: 11332674Abstract: The present invention generally relates to improved catalysts that provide for reduced product contaminants, related methods and improved reaction products. It more specifically relates to improved direct fuel production and redox catalysts that provide for reduced levels of certain oxygenated contaminants, methods related to the use of those catalysts, and hydrocarbon fuel or fuel-related products that have improved characteristics. In one aspect, the present invention is directed to a method of converting one or more carbon-containing feedstocks into one or more hydrocarbon liquid fuels. The method includes the steps of: converting the one or more carbon-containing feedstocks into syngas; and, converting the syngas to one or more hydrocarbons (including liquid fuels) and a water fraction. The water fraction comprises less than 500 ppm of one or more carboxylic acids.Type: GrantFiled: February 26, 2019Date of Patent: May 17, 2022Assignee: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Patent number: 11104853Abstract: A unique process and catalyst is described that operates efficiently for the direct production of a high cetane diesel type fuel or diesel type blending stock from stochiometric mixtures of hydrogen and carbon monoxide. This invention allows for, but is not limited to, the economical and efficient production high quality diesel type fuels from small or distributed fuel production plants that have an annual production capacity of less than 10,000 barrels of product per day, by eliminating traditional wax upgrading processes. This catalytic process is ideal for distributed diesel fuel production plants such as gas to liquids production and other applications that require optimized economics based on supporting distributed feedstock resources.Type: GrantFiled: August 5, 2020Date of Patent: August 31, 2021Assignee: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Publication number: 20200377799Abstract: A unique process and catalyst is described that operates efficiently for the direct production of a high cetane diesel type fuel or diesel type blending stock from stochiometric mixtures of hydrogen and carbon monoxide. This invention allows for, but is not limited to, the economical and efficient production high quality diesel type fuels from small or distributed fuel production plants that have an annual production capacity of less than 10,000 barrels of product per day, by eliminating traditional wax upgrading processes. This catalytic process is ideal for distributed diesel fuel production plants such as gas to liquids production and other applications that require optimized economics based on supporting distributed feedstock resources.Type: ApplicationFiled: August 5, 2020Publication date: December 3, 2020Applicant: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Patent number: 10774271Abstract: A unique process and catalyst is described that operates efficiently for the direct production of a high cetane diesel type fuel or diesel type blending stock from stochiometric mixtures of hydrogen and carbon monoxide. This invention allows for, but is not limited to, the economical and efficient production high quality diesel type fuels from small or distributed fuel production plants that have an annual production capacity of less than 10,000 barrels of product per day, by eliminating traditional wax upgrading processes. This catalytic process is ideal for distributed diesel fuel production plants such as gas to liquids production and other applications that require optimized economics based on supporting distributed feedstock resources.Type: GrantFiled: February 26, 2019Date of Patent: September 15, 2020Assignee: Greyrock Technologies, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Publication number: 20190322946Abstract: The present invention generally relates to improved catalysts that provide for reduced product contaminants, related methods and improved reaction products. It more specifically relates to improved direct fuel production and redox catalysts that provide for reduced levels of certain oxygenated contaminants, methods related to the use of those catalysts, and hydrocarbon fuel or fuel-related products that have improved characteristics. In one aspect, the present invention is directed to a method of converting one or more carbon-containing feedstocks into one or more hydrocarbon liquid fuels. The method includes the steps of: converting the one or more carbon-containing feedstocks into syngas; and, converting the syngas to one or more hydrocarbons (including liquid fuels) and a water fraction. The water fraction comprises less than 500 ppm of one or more carboxylic acids.Type: ApplicationFiled: February 26, 2019Publication date: October 24, 2019Applicant: Greyrock Technology, LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Publication number: 20190203126Abstract: A unique process and catalyst is described that operates efficiently for the direct production of a high cetane diesel type fuel or diesel type blending stock from stochiometric mixtures of hydrogen and carbon monoxide. This invention allows for, but is not limited to, the economical and efficient production high quality diesel type fuels from small or distributed fuel production plants that have an annual production capacity of less than 10,000 barrels of product per day, by eliminating traditional wax upgrading processes. This catalytic process is ideal for distributed diesel fuel production plants such as gas to liquids production and other applications that require optimized economics based on supporting distributed feedstock resources.Type: ApplicationFiled: February 26, 2019Publication date: July 4, 2019Applicant: Greyrock Technology,LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Patent number: 10260005Abstract: The present invention generally relates to improved catalysts that provide for reduced product contaminants, related methods and improved reaction products. It more specifically relates to improved direct fuel production and redox catalysts that provide for reduced levels of certain oxygenated contaminants, methods related to the use of those catalysts, and hydrocarbon fuel or fuel-related products that have improved characteristics. In one aspect, the present invention is directed to a method of converting one or more carbon-containing feedstocks into one or more hydrocarbon liquid fuels. The method includes the steps of: converting the one or more carbon-containing feedstocks into syngas; and, converting the syngas to one or more hydrocarbons (including liquid fuels) and a water fraction. The water fraction comprises less than 500 ppm of one or more carboxylic acids.Type: GrantFiled: August 5, 2016Date of Patent: April 16, 2019Assignee: Greyrock Technology LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Patent number: 10260006Abstract: A unique process and catalyst is described that operates efficiently for the direct production of a high cetane diesel type fuel or diesel type blending stock from stochiometric mixtures of hydrogen and carbon monoxide. This invention allows for, but is not limited to, the economical and efficient production high quality diesel type fuels from small or distributed fuel production plants that have an annual production capacity of less than 10,000 barrels of product per day, by eliminating traditional wax upgrading processes. This catalytic process is ideal for distributed diesel fuel production plants such as gas to liquids production and other applications that require optimized economics based on supporting distributed feedstock resources.Type: GrantFiled: March 15, 2017Date of Patent: April 16, 2019Assignee: Greyrock Technology LLCInventors: Robert Schuetzle, Dennis Schuetzle
-
Patent number: 9909071Abstract: The disclosed embodiments relate to a process ideal for small scale (distributed) gas to liquids production by recycling and processing some side (non-targeted) products. During operation, the system produces a range of hydrocarbon outputs. The disclosed embodiments recycle non-targeted outputs to maximize the output of targeted hydrocarbon products. Recycled outputs include waxes, light gases and syngas. These embodiments allow for, but are not limited to, the efficient production of high cetane diesel fuel through the recycling of long-chain hydrocarbon wax and short-chain light. Process efficiency is further increased through the recycling of tail-gas produced from catalytic reactions.Type: GrantFiled: November 13, 2013Date of Patent: March 6, 2018Assignee: Greyrock Technology LLCInventors: Robert Schuetzle, Dennis Schuetzle, Matthew Caldwell
-
Patent number: 9896626Abstract: An apparatus for a distributed manufacturing plant that allows direct, economical production of transportation fuels and/or chemicals at remote sites is described. The production plant employs two primary integrated systems consisting of a syngas generator and a catalytic process that are used to directly produce fuels and chemicals. The syngas generator utilizes oxygen anions, produced from a ceramic membrane system, to generate high quality syngas directly at pressures of about 100-600 psia. The tail gas and water containing hydroxyl-alkanes from the catalytic process are recycled into the syngas generator, in automatically controlled proportions, to regulate the hydrogen to carbon monoxide within the preferred H2/CO stoichiometric range of about 1.8-2.4. The primary products produced directly from the plant include reformulated gasoline blendstocks, #1 diesel fuels, and #2 diesel fuels.Type: GrantFiled: December 26, 2014Date of Patent: February 20, 2018Assignee: Greyrock Technology LLCInventors: Robert Schuetzle, Dennis Schuetzle