Abstract: A clamp mechanism for a power distribution line sensor including a drive rod having a first rod portion with a spiral thread formed in a first-handed thread direction, a second rod portion with a spiral thread formed in an opposite-handed thread direction, and a coupling end portion. The mechanism also includes a first clamp portion having a first drive block engaged with the first rod portion and a first clamp arm having a pin-in-slot connection to that drive block, as well as a second clamp portion having a second drive block engaged with the second rod portion and a second clamp arm having a pin-in-slot connection to that drive block. The first clamp arm and the second clamp arm are secured to each other, yet rotatable with respect to each other, at a proximal end of each respective clamp arm. A clamp block may function as part of the securement.
Type:
Grant
Filed:
January 29, 2013
Date of Patent:
May 10, 2016
Assignee:
GRID SENTRY LLC
Inventors:
Everett P. Trittschuh, III, Christopher R. Collins
Abstract: A clamp mechanism for a power distribution line sensor including a drive rod having a first rod portion with a spiral thread formed in a first-handed thread direction, a second rod portion with a spiral thread formed in an opposite-handed thread direction, and a coupling end portion. The mechanism also includes a first clamp portion having a first drive block engaged with the first rod portion and a first clamp arm having a pin-in-slot connection to that drive block, as well as a second clamp portion having a second drive block engaged with the second rod portion and a second clamp arm having a pin-in-slot connection to that drive block. The first clamp arm and the second clamp arm are secured to each other, yet rotatable with respect to each other, at a proximal end of each respective clamp arm. A clamp block may function as part of the securement.
Type:
Application
Filed:
January 29, 2013
Publication date:
July 31, 2014
Applicant:
GRID SENTRY LLC
Inventors:
Everett P. Trittschuh, III, Christopher R. Collins
Abstract: An electrical current transformer for installation upon a power distribution line including a generally annular, split core and a secondary winding. The secondary winding includes a first winding portion, wound with a first winding polarity about the split core, and a second winding portion, wound with a second, opposite winding polarity about the split core, and a tap. The transformer further includes first and second rectifiers, electrically connecting a tap output to terminals of the first and second winding portion opposite the tap, respectively, and a tap control for controlling the tap output, where the tap is both electrically connectable to the output to provide an additive connection and electrically isolatable from the output to cause a subtractive connection. The tap control controls the tap output in response to a condition sensed in the powered circuit. Self-cancellation may be achieved by using windings having an equal number of turns.
Abstract: A disassociated split sensor coil manufactured from hemi-toroidal cores. Each core includes a surface channel extending from end to end, with wire sections being wound about the core to form a helical sensor coil electrically connected to a connecting wire returned through the surface channel. The connecting wires are interconnected to form a continuous electrical path, with terminal wires being electrically connectable to a monitoring circuit. Also, a method of manufacturing including obtaining a hemi-toroidal core having a surface channel, placing a first length of a wire within the surface channel so as to extend from end to end, winding a second length of the wire so as to form a helical coil section extending from end to end, providing a third length of the wire extending from one end, and repeating the steps to form a disassociated split sensor coil electrically connectable by joining the first lengths of wire.