Abstract: A method for acoustically measuring material properties of a test piece at high temperatures, includes the steps of: heating the test piece to within a testing temperature range; performing a background measurement within said testing temperature range by capturing a vibrational signal from the test piece within a calibration period, thereby obtaining a noise signal; performing an acoustic measurement on said test piece within said testing temperature range and within a testing period by: imparting a vibrational excitation onto the test piece; capturing a vibrational signal of the test piece within the testing period, thereby obtaining a vibrational response signal to said vibrational excitation, and obtaining the material properties of the test piece by analyzing the vibrational response signal, thereby taking into account the noise signal. A system is provided for acoustically measuring material properties of a test piece at high temperatures.
Abstract: The invention pertains to an apparatus for analyzing a mechanical vibratory response of a solid material sample, the apparatus comprising: an array of impactors arranged to impart an impact on respective well-defined points on the surface of said solid material sample; a sensor configured to capture said mechanical vibratory response as a time-varying signal, subsequent to an impact of said at least one impactor; and processing means configured to analyze said time-varying signal to determine the frequencies and decay constants of sinusoids making up said time-varying signal. The invention also pertains to a corresponding method of characterizing a solid material sample.