Patents Assigned to Grirem Advanced Materials Co., Ltd.
  • Patent number: 11942577
    Abstract: An optical device includes an LED chip, a light absorber and/or visible-light luminescent material, and a near-infrared luminescent material, wherein a luminous power of light emitted by the near-infrared luminescent material and the light absorber and/or visible-light luminescent material in a band of 650-1000 nm under the excitation of the LED chip is A, and a sum of a luminous power of light emitted by the near-infrared and visible-light luminescent materials in a band of 350-650 nm under the excitation of the LED chip and a luminous power of residual light emitted by the LED chip in the band of 350-650 nm after the LED chip excites the near-infrared and visible-light luminescent materials is B, with B/A*100% being 0.1%-10%. According to the implementation where the optical device employs the LED chip to combine the near-infrared luminescent material and the light absorber and/or visible-light luminescent material simultaneously.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: March 26, 2024
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Ronghui Liu, Yuanhong Liu, Yanfeng Li, Xiaoxia Chen, Xiaole Ma, Yuan Xue
  • Patent number: 11932793
    Abstract: The invention relates to a phosphor with garnet structure and a light-emitting device comprising the phosphor, wherein the phosphor includes the following components in percentage by weight: 38.47-45.19% of Y element, 9.49-22.09% of Al element, 2.06-24.31% of Ga element, 27.3-32.04% of O element, 0.43-1.46% of Ce element. In the phosphor particles, the shortest distance from the surface of one side of the particle to the surface of the opposite side through the centroid of the particle is defined as R, the longest distance is R1, and 5 ?m?R?40 ?m; any distance from the particle surface to the centroid is r, and 0<r<½R; and the space with the distance from the particle surface to the centroid direction being less than or equal to r is defined as rinner.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: March 19, 2024
    Assignees: GRIREM ADVANCED MATERIALS CO., LTD., Grirem Hi-Tech Co., Ltd, Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd.
    Inventors: Ronghui Liu, Shaowei Qin, Yuanhong Liu, Yanfeng Li, Xiaoxia Chen, Xiaole Ma, Yuan Xue
  • Patent number: 11932790
    Abstract: Disclosed are a red light and near-infrared light-emitting material and a preparation method thereof, and a light-emitting device including the light-emitting material. The red light and near-infrared light-emitting material contains a compound represented by a molecular formula, aSc2O3·Ga2O3·bR2O3, wherein the element R includes one or two of Cr, Ni, Fe, Yb, Nd or Er; 0.001?a?0.6; and 0.001?b?0.1. The light-emitting material can be excited by a spectrum having a wide wavelength range (ultraviolet light or purple light or blue light) to emit light with a wide spectrum of 650 nm to 1700 nm or multiple spectra, thus having higher light-emitting intensity.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: March 19, 2024
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Xiaoxia Chen, Yuanhong Liu, Ronghui Liu, Yuan Xue
  • Patent number: 11923485
    Abstract: An optical device includes an LED chip, a visible-light luminescent material, and a near-infrared luminescent material, wherein a luminous power of light emitted by the near-infrared and visible-light luminescent materials in a band of 650-1000 nm under the excitation of the LED chip is A, and a sum of a luminous power of light emitted by the near-infrared and visible-light luminescent materials in a band of 350-650 nm under the excitation of the LED chip and a luminous power of residual light emitted by the LED chip in the band of 350-650 nm after the LED chip excites the near-infrared and visible-light luminescent materials is B, with B/A*100% being 0.1%-10%. According to the implementation where the optical device employs the LED chip to combine the near-infrared luminescent material and the visible-light luminescent material simultaneously.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: March 5, 2024
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Ronghui Liu, Yuanhong Liu, Xiaoxia Chen, Yuan Xue, Xiaole Ma
  • Patent number: 11802326
    Abstract: An anisotropic bonded magnet and a preparation method thereof are provided. By stacking magnets having different magnetic properties and/or densities, the magnets in the middle have high properties and the magnets at two ends and/or the periphery have low properties, thereby compensating for a property deviation caused by a difference in pressing densities during a pressing process, and improving the property uniformity of the magnets in an axial direction. The method solves the problem of “low in the middle and high at two ends” caused by the phenomenon of non-uniform magnetic field orientation and density along a height direction during orientation and densification.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: October 31, 2023
    Assignees: GRIREM HI-TECH CO., LTD., GRIREM ADVANCED MATERIALS CO., LTD., Grirem (Rongcheng) Co., Ltd.
    Inventors: Yang Luo, Yuanfei Yang, Zilong Wang, Dunbo Yu, Hongbin Zhang, Jiajun Xie, Zhou Hu, Zhongkai Wang
  • Patent number: 11718788
    Abstract: The present invention discloses a red light and near-infrared light-emitting material and a light-emitting device. The red light and near-infrared light-emitting material contains a compound represented by a molecular formula, xA2O3·yIn2O3·bR2O3, wherein the element A is Sc and/or Ga; the element R is one or two of Cr, Yb, Nd or Er and necessarily includes Cr; and 0.001?x?1, 0.001?y?1, 0.001?b?0.2, and 0.001?b/(x+y)?0.2. The light-emitting material can be excited by a technically mature blue light source to emit light with a high-intensity wide-spectrum or multiple spectra. Compared with existing materials, the light-emitting material has higher luminescent intensity. The light-emitting device uses an LED chip to combine an infrared light-emitting material and a visible light light-emitting material. In this way, the same LED chip can emit near-infrared light and visible light at the same time, which greatly simplifies the packaging process and reduces the packaging cost.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: August 8, 2023
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD
    Inventors: Ronghui Liu, Yuanhong Liu, Xiaoxia Chen, Xiaole Ma, Yuan Xue, Tongyu Gao
  • Patent number: 11705257
    Abstract: The present invention relates to an R-T-B sintered magnet and a preparation method thereof. The sintered magnet includes a grain boundary region T1, a shell layer region T2 and an R2Fe14B grain region T3; at 10 ?m to 60 ?m from a surface of the sintered magnet toward a center thereof, an area ratio of the shell layer region T2 to the R2Fe14B grain region T3 is 0.1 to 0.3, and a thickness of the shell layer region T2 is 0.5 ?m to 1.2 ?m; and an average coating percent of the shell layer region T2 on the R2Fe14B grain region T3 is 80% or more. In the present invention, by optimizing a preparation process and a microstructure of a traditional rare earth permanent magnet, diffusion efficiency of heavy rare earth in the magnet is improved, such that coercivity of the magnet is greatly improved, and manufacturing cost is reduced.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: July 18, 2023
    Assignees: GRIREM ADVANCED MATERIALS CO., LTD., Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd., Griceon (Rongcheng) Co., Ltd.
    Inventors: Yang Luo, Dunbo Yu, Wei Zhu, Xinyuan Bai, Xiao Lin, Shengjie Zhu, Zilong Wang, Haijun Peng
  • Patent number: 11685860
    Abstract: A rare earth halide scintillation material the chemical formula of the material being CeBr3+x, wherein 0.0001x0.1. The rare earth halide scintillation material has excellent scintillation properties including high light output, high energy resolution, and fast decay.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: June 27, 2023
    Assignees: GRIREM ADVANCED MATERIALS CO., LTD., GRIREM HI-TECH CO., LTD., Rare Earth Functional Materials (Xiong'an) Innovation Co., Ltd.
    Inventors: Jinqiu Yu, Liang Luo, Chengpeng Diao, Lei Cui, Hao Wu, Huaqiang He
  • Patent number: 11680203
    Abstract: The present invention relates to a red phosphor, a preparation method thereof and a light-emitting device prepared therefrom. A particle of the red phosphor consists of a phosphor inner core having a chemical formula of Ax1Gez1F6:y1Mn4+ and an outer shell having a chemical formula of Bx2Mz2F6:y2Mn4+, wherein 1.596?x1?2.2, 1.6?x2?2.2, 0.001?y1?0.2, 0?y2?0.2, 0.9?z1?1.1, and 0.9?z2?1.1; A and B are independently selected from alkali metal elements; and M is Si, or Si and Ge. The red phosphor provided by the present invention has high luminous efficiency and stability. Moreover, the phosphor alone or in combination with other luminescent materials can be used for preparing a light-emitting device with high performance.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: June 20, 2023
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Ronghui Liu, Guantong Chen, Yuanhong Liu, Xiaole Ma
  • Patent number: 11518935
    Abstract: The present invention belongs to the technical field of inorganic luminescent materials, particularly relates to a nitride fluorescent material, and further discloses a light-emitting device containing such a fluorescent material. The nitride fluorescent material contains a compound with a structure like MmAlxSiyN3: aR, bEu, cCe. The fluorescent material has very high physical stability and chemical stability, and the fluorescent material is better in crystallization, and thus has relatively high external quantum efficiency. When being applied to a light-emitting device, the fluorescent material can fully exert the advantages of good stability and high external quantum efficiency, and the light-emitting efficiency and stability of the light-emitting device can be further improved.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: December 6, 2022
    Assignees: GRIREM ADVANCED MATERIALS CO., LTD., GUOKE RE ADVANCED MATERIALS CO., LTD.
    Inventors: Ronghui Liu, Yuanhong Liu, Lei Chen, Ze Jiang, Lengleng Shao
  • Patent number: 11512251
    Abstract: The present invention provides a rare-earth halide scintillating material and application thereof. The rare-earth halide scintillating material has a chemical formula of REaCebX3, wherein RE is a rare-earth element La, Gd, Lu or Y, X is one or two of halogens Cl, Br and I, 0?a?1.1, 0.01?b?1.1, and 1.0001?a+b?1.2. By taking a +2 valent rare-earth halide having the same composition as a dopant to replace a heterogeneous alkaline earth metal halide in the prior art for doping, the rare-earth halide scintillating material is relatively short of a halogen ion. The apparent valence state of a rare-earth ion is between +2 and +3. The rare-earth halide scintillating material belongs to non-stoichiometric compounds, but still retains a crystal structure of an original stoichiometric compound, and has more excellent energy resolution and energy response linearity than the stoichiometric compound.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: November 29, 2022
    Assignees: GRIREM ADVANCED MATERIALS CO., LTD., GENERAL RESEARCH INSTITUTE FOR NONFERROUS METALS
    Inventors: Jinqiu Yu, Chengpeng Diao, Hao Wu, Lei Cui, Huaqiang He
  • Patent number: 11505852
    Abstract: The present disclosure discloses an yttrium (Y)-added rare-earth permanent magnetic material and a preparation method thereof. A chemical formula of the material expressed in atomic percentage is (YxRE1-x)aFebalMbNc, wherein 0.05?x?0.4, 7?a?13, 0?b?3, 5?c?20, and the balance is Fe, namely, bal=100-a-b-c; RE represents a rare-earth element Sm, or a combination of the rare-earth element Sm and any one or more elements of Zr, Nd and Pr; M represents Co and/or Nb; and N represents nitrogen. In the preparation method, the rare-earth element Y is utilized to replace the element Sm of a samarium-iron-nitrogen material. By regulating a ratio of the element Sm to the element Y, viscosity of an alloy liquid can be reduced, and an amorphous forming ability of the material is enhanced.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: November 22, 2022
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Yang Luo, Xiao Lin, Guiyong Wu, Jiajun Xie, Zilong Wang, Wenlong Yan, Zhongkai Wang, Dunbo Yu
  • Patent number: 11495376
    Abstract: The present invention discloses rare earth-bonded magnetic powder and a preparation method therefor. The bonded magnetic powder is of a multilayer core-shell structure, and comprises a core layer and an antioxidant layer (3), wherein the core layer is formed by RFeMB, R is Nd and/or PrNd, and M is one or more of Co, Nb, and Zr; and the core layer is coated with an iron-nitrogen layer (2). In addition, the present invention also discloses the preparation method for the rare earth-bonded magnetic powder and a bonded magnet. The oxidation and corrosion of magnetic raw powder during phosphorization and subsequent treatment process are effectively prevented, thereby further improving the long-term temperature resistance and environmental tolerance of the material.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: November 8, 2022
    Assignees: GRIREM ADVANCED MATERIALS CO., LTD., GUOKE RE ADVANCED MATERIALS CO., LTD.
    Inventors: Yang Luo, Hongbin Zhang, Zhou Hu, Dunbo Yu, Ningtao Quan, Yuanfei Yang, Wenlong Yan, Jiajun Xie
  • Patent number: 11485907
    Abstract: The present disclosure relates to the technical field of luminescent materials, and more particularly, to a nitride luminescent material and a light emitting device comprising the luminescent material. The nitride luminescent material recited in the present disclosure includes an inorganic compound with the structural composition RwQxSiyNz, the excitation wavelength of the luminescent material is between 300-650 nm, and the emission main peak of the NIR light region is broadband emission between 900-1100 nm; the excitation wavelength of the luminescent material is relatively broad and capable of excellent absorption of ultraviolet visible light, and has more intensive NIR emission as compared with NIR organic luminescent materials and inorganic luminescent materials of other systems, so it is an ideal application material for NIR devices.
    Type: Grant
    Filed: September 29, 2018
    Date of Patent: November 1, 2022
    Assignees: GRIREM ADVANCED MATERIALS CO., LTD., GUOKE RE ADVANCED MATERIALS CO., LTD.
    Inventors: Ronghui Liu, Yuanhong Liu, Xia Zhang, Wei Gao, Xiaole Ma, Huibing Xu
  • Patent number: 11299672
    Abstract: The near-infrared luminescent material is capable of efficiently emitting near-infrared light with a peak wavelength of 900 nm to 1,100 nm under an effective excitation wavelength of 250 nm to 750 nm. The luminescent material has the characteristics of wide excitation emission wavelength, high luminous efficiency, uniform luminescence, no impurity phase, high stability, simple preparation and the like. The present invention further provides the light-emitting device prepared from the near-infrared luminescent material. The luminescent material and the light-emitting device provided by the present invention solve the problems of poor stability, low luminous efficiency, high preparation cost and the like of a conventional near-infrared luminescent material and light-emitting device, and have a favorable application prospect.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: April 12, 2022
    Assignees: GRIREM ADVANCED MATERIALS CO., LTD., GUOKE RE ADVANCED MATERIALS CO., LTD.
    Inventors: Ronghui Liu, Xiaoxia Chen, Yuanhong Liu, Yanfeng Li, Xiaole Ma
  • Patent number: 11101057
    Abstract: Provided are a highly thermostable rare-earth permanent magnetic material, a preparation method thereof and a magnet containing the same. A composition of the rare-earth permanent magnetic material by an atomic percentage is as follows: SmxRaFe100-x-y-z-aMyNz, wherein R is at least one of Zr and Hf, M is at least one of Co, Ti, Nb, Cr, V, Mo, Si, Ga, Ni, Mn and Al, x+a is 7-10%, a is 0-1.5%, y is 0-5% and z is 10-14%.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 24, 2021
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Guiyong Wu, Yang Luo, Hongwei Li, Yuanfei Yang, Dunbo Yu, Ningtao Quan, Chao Yuan, Wenlong Yan
  • Patent number: 11098249
    Abstract: Phosphor, a preparation method for the phosphor, and a light emitting device having the phosphor. The phosphor comprises an inorganic compound which at least comprises an element M, an element A, an element D, and an element R; the element M is one or two elements selected from the group consisting of Lu, La, Pr, Nd, Sm, Y, Tb, and Gd and must comprise Lu; the element A is Si and/or Ge; the element D is one or two elements selected from the group consisting of O, N, and F and must comprise N; the element R is Ce and/or Dy. Since the ionic radius of Lu3+ is smaller than that of La3+, when the inorganic compound comprises element Lu, the original ligand site would be contracted. In order to reduce lattice distortion due to the ligand site contraction, the adjacent ligand site expands, and the photochromic property is adjusted.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 24, 2021
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Ronghui Liu, Weidong Zhuang, Fu Du, Yuanhong Liu, Wei Gao, Xia Zhang, Huibing Xu, Chunpei Yan, Xiaowei Zhang
  • Patent number: 11066600
    Abstract: A lutetium nitride-based phosphor and a light emitting device comprising the same, wherein the lutetium nitride-based phosphor comprises an inorganic compound, and the composition of the inorganic compound comprises at least an M element, an A element, a D element and an R element; the M element is one or two elements selected from a group consisting of Lu, La, Pr, Nd, Sm, Y, Tb and Gd, and necessarily comprises Lu; the A element is Si and/or Ge; the D element is one or two elements selected from a group consisting of O, N and F, and necessarily comprises N; the R element is Ce and/or Dy, and the atomic molar ratio of the Lu element in the M element is greater than 50%. Because the ion radius of Lu3+ is smaller than the ion radius of La3+, the light color performance thereof can be flexibly adjusted according to needs.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 20, 2021
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Ronghui Liu, Weidong Zhuang, Fu Du, Yuanhong Liu, Wei Gao, Xia Zhang, Huibing Xu, Chunpei Yan, Xiaowei Zhang
  • Patent number: 10811175
    Abstract: An alloy material, a bonded magnet, and a modification method of a rare-earth permanent magnetic powder are provided by the present application. A melting point of the alloy material is lower than 600° C. and a composition of the alloy material by an atomic part is RE100-x-yMxNy, wherein RE is one or more of non-heavy rare-earth Nd, Pr, Sm, La and Ce, M is one or more of Cu, Al, Zn and Mg, N is one or more of Ga, In and Sn, x=10-35 and y=1-15.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: October 20, 2020
    Assignee: GRIREM ADVANCED MATERIALS CO., LTD.
    Inventors: Yang Luo, Chao Yuan, Kuo Men, Ningtao Quan, Hongbin Zhang, Wenlong Yan, Dunbo Yu, Yuanfei Yang
  • Patent number: 10385265
    Abstract: The present disclosure provides a red phosphor powder, a preparation method thereof and a luminescent device comprising the red phosphor powder. The red phosphor powder comprises inorganic compounds containing an element A, an element D, an element X and manganese, wherein element A is one or more selected from a group of Li, Na and K and necessarily includes K; element D is composed of Ge and Si, or element D is composed of Si, Ge and Ti; and element X is one or more selected from a group of F, Br and Cl and necessarily includes F; and the inorganic compound has the same space group structure as K2GeF6, the space group structure being the hexagonal crystal system P-63mc(186). The red phosphor powder has a uniform morphology, a high luminescent efficiency and a good stability.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: August 20, 2019
    Assignee: Grirem Advanced Materials Co., Ltd.
    Inventors: Ronghui Liu, Guantong Chen, Yuming Jin, Xiaole MA, Yuanhong Liu, Lengleng Shao