Abstract: A valve in which the flow control element includes a fixed disk and a rotatable disk, and a Venturi nozzle for measuring flow through the valve, arranged in a straight configuration.
Abstract: A flow control valve including a main valve and a pilot valve for controlling a piston of the main valve. The pilot valve is controlled in part with relatively high pressure fluid ported from a high pressure port of a flow sensor and relatively low pressure fluid ported from a low pressure port of a flow sensor, and also controlled with a control fluid applied to a control plate acting on a compression spring to bias the pilot valve. The pressure in the control fluid is controlled by pressurizing a control fluid reservoir with a mechanism accessible from outside the valve and the piping in which the valve is installed. The flow sensor and the reservoir are preferably disposed within the flange of the valve.
Abstract: A flow control valve including a main valve and a pilot valve for controlling a piston of the main valve. The pilot valve is controlled in part with relatively high pressure fluid ported from a high pressure port and relatively low pressure fluid ported from a low pressure port.
Abstract: A rotationally adjustable valve is disclosed whereby the user is able to control the flow of fluids from complete shutoff to maximum flow by rotating the adjustment means of the valve, said rotation being axial to the flow of the fluid. Additionally, the user is able to attach high and low pressure test probes directly to the valve, as it is rotatably adjusted, so that additional equipment is not required next to the valve. An embodiment of this invention includes the use of an adjustable Cv disk to set the maximum flow of the valve, rather than just create a simple 180° on/off, very similar to a current 90° ball valve that this device will replace.
Abstract: A rotationally adjustable valve is disclosed whereby the user is able to control the flow of fluids from complete shutoff to maximum flow by rotating the adjustment means of the valve, said rotation being axial to the flow of the fluid. Additionally, the user is able to attach high and low pressure test probes directly to the valve, as it is rotatably adjusted, so that additional equipment is not required next to the valve. An embodiment of this invention includes the use of an adjustable Cv disk to set the maximum flow of the valve, rather than just create a simple 180° on/off, very similar to a current 90° ball valve that this device will replace.
Abstract: A rotationally adjustable valve is disclosed whereby the user is able to control the flow of fluids from complete shutoff to maximum flow by rotating the body of the valve, said rotation being axial to the flow of the fluid. Additionally, the user is able to attach high and low pressure test probes directly to the valve, as it is rotatably adjusted, so that additional equipment is not required next to the valve. An embodiment of this invention includes the use of an adjustable Cv disk to set the maximum flow of the valve, rather than just create a simple 180° on/off, very similar to a current 90° ball valve that this device will replace. All of the problems associated with the ball valve have been minimized including creating a linear relationship between the percentage open of the valve and the percentage of maximum flow of the valve.