Patents Assigned to GRU Energy Lab Inc.
  • Publication number: 20240128441
    Abstract: Described herein are carbon-silicon composite structures and methods of producing such structures. A carbon-silicon composite structure comprises one or more carbon-containing structures that have pores at least partially filled with silicon-containing structures. Specifically, the silicon-containing structures are attached to the pore walls while maintaining void spaces within these pores. These void spaces can accommodate silicon expansion during lithiation. Carbon-silicon composite structures can be produced by submerging carbon-containing structures into a precursor liquid solution (comprising a precursor) and driving this solution into the pores. The silicon-containing structures are then formed (from the precursor) within the pores either electrochemically (e.g., by applying a voltage to the solution and structures) or chemically (e.g., by introducing the structures into a reducing liquid solution). In some examples, these void spaces are sealed from the environment by additional structures, e.g.
    Type: Application
    Filed: October 17, 2023
    Publication date: April 18, 2024
    Applicant: Gru Energy Lab Inc.
    Inventors: Xiaohua Liu, Xiahui Yao, Sa Zhou, Song Han
  • Publication number: 20240044036
    Abstract: Provided are methods of forming active materials for electrochemical cells using low-temperature electrochemical deposition, e.g., less than 200° C. Specifically, these processes allow precise control of the morphology, composition, and size of deposited structures. For example, the deposited structure may be doped, alloyed, or surface treated during their deposition using a combination of different precursors. In particular, silicon structure may be pre-lithiated while these structures are being formed. The selection of working electrodes (surface size and properties), electrolyte composition, and other parameters result in different types of structures, e.g., precipitating from the electrolyte or deposited on the electrode. Low-temperature plating does not require a lot of energy and volatile and invisible precursors. Furthermore, this plating produces a more confined waste stream, suitable for post-reaction recycling.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 8, 2024
    Applicant: Gru Energy Lab Inc.
    Inventors: Xiahui Yao, Xiaohua Liu, Sa Zhou, Song Han
  • Publication number: 20230411686
    Abstract: Provided are layered gel-polymer electrolytes and electrochemical cells comprising these electrolytes as well as methods of forming the electrolytes and the cells. A gel-polymer electrolyte comprises a support core and one or two interface layers on the core surface. The interface layers are relied on to conform to electrode surfaces with high surface roughness, while the support core prevents any physical penetration and electrical shorts through the gel-polymer electrolyte, e.g., by electrode protruding peaks. Specifically, the interface layer redistributes around these protruding peaks and forms a continuous interface with the electrode surface. When the stack is compressed, the gel-polymer electrolyte also releases some liquid electrolyte, which soaks the electrode and enhances ionic transfer within the electrode and through the electrolyte-electrode interface. The gel-polymer electrolyte is formed by coating interface layers on the support core and soaking this assembly in a liquid electrolyte.
    Type: Application
    Filed: September 5, 2023
    Publication date: December 21, 2023
    Applicant: Gru Energy Lab Inc.
    Inventors: Song Han, Sa Zhou, Xinghua Meng
  • Patent number: 11827993
    Abstract: Provided are methods of forming active materials for electrochemical cells using low-temperature electrochemical deposition, e.g., less than 200° C. Specifically, these processes allow precise control of the morphology, composition, and size of deposited structures. For example, the deposited structure may be doped, alloyed, or surface treated during their deposition using a combination of different precursors. In particular, silicon structure may be pre-lithiated while these structures are being formed. The selection of working electrodes (surface size and properties), electrolyte composition, and other parameters result in different types of structures, e.g., precipitating from the electrolyte or deposited on the electrode. Low-temperature plating does not require a lot of energy and volatile and invisible precursors. Furthermore, this plating produces a more confined waste stream, suitable for post-reaction recycling.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: November 28, 2023
    Assignee: GRU Energy Lab Inc.
    Inventors: Xiahui Yao, Xiaohua Liu, Sa Zhou, Song Han
  • Patent number: 11652240
    Abstract: Provided are new solid-state electrochemical cells and methods for fabricating these cells. In some examples, a solid-state electrochemical cell is assembled using a negative electrode, a positive electrode, and a gel-polymer electrolyte layer, which is disposed and provides ionic communications between these electrodes. Prior to this assembly, the negative electrode is free from electrolytes. The negative electrode is fabricated using a coating technique, e.g., forming a slurry, comprising a polymer binder and one or more negative active materials structures, such as silicon, graphite, and the like. The porosity, size, and other characteristics of the negative active materials structures and of the resulting coated later are specifically controlled to ensure operation with the gel-polymer electrolyte layer or, more specifically, high-rate charge and discharge, e.g., greater than 1 mA/cm2.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: May 16, 2023
    Assignee: GRU Energy Lab Inc.
    Inventors: Song Han, Sa Zhou
  • Patent number: 11594725
    Abstract: Provided are methods for solid state pretreatment of active materials (e.g., prelithiation of silicon monoxide) while forming treated negative active material structures. Also provided are the formed structures, negative electrodes comprising these structures, and electrochemical cells comprising these electrodes. In some examples, silicon monoxide structures are mixed with lithium hydroxide structures or some other lithium-containing structures. The mixture is heated in an inert environment to form treated negative active material structures. These treated structures comprise various lithium-containing components, some of which trap lithium. When an electrochemical cell, formed with these treated negative active material structures, is initially charged and additional new lithium ions are introduced into the negative electrodes (e.g.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: February 28, 2023
    Assignee: GRU Energy Lab Inc.
    Inventors: Song Han, Sa Zhou
  • Publication number: 20220344641
    Abstract: Described herein are composite battery electrode structures and methods of forming such structures. Composite battery electrode structures comprise active electrode material structures and polymer structures such that at least a portion of the polymer structures at least partially protrudes into some of the high capacity structures. Some of these polymer structures may be fully enclosed by the active electrode material structures. Other polymer structures may only partially extend inside the active electrode material structures. Furthermore, additional polymer structures may be bound to the external surface of the active electrode material structures. Composite battery electrode structures may be formed using low-temperature deposition techniques, such as solvent-thermal synthesis, direct chemical reduction, and electrochemical deposition. More specifically, composite battery electrode structures may be formed from a solution comprising active electrode material precursors and polymer precursors, e.g.
    Type: Application
    Filed: April 27, 2022
    Publication date: October 27, 2022
    Applicant: Gru Energy Lab Inc.
    Inventors: Sa Zhou, Song Han, Xiahui Yao
  • Patent number: 11139472
    Abstract: Provided are electrodes for use in electrochemical cells and active material components used to form these electrodes. Also provided are methods of forming these active material components as well as methods of forming these electrodes. An electrode comprises a current collector and an active layer, comprising active material structures and an inorganic conductive layer. The inorganic conductive layer coats and binds together these active material structures. Furthermore, the inorganic conductive layer also provides adhesion of the active layer to the current collector. The inorganic conductive layer has an electronic conductivity of at least 104 S/m and provides an electronic path among the active material structures and, in some examples, between the active material structures and the current collector. In some embodiments, the same inorganic conductive layer shared by multiple active material structures.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: October 5, 2021
    Assignee: GRU ENERGY LAB INC.
    Inventors: Song Han, Sa Zhou, Xiaohua Liu, Xinghua Meng
  • Patent number: 11056704
    Abstract: Provided are hybrid active material structures for use in electrodes of electrochemical cells and methods of forming these structures. A hybrid active material structure comprises at least one first substructure and at least one second substructures, each comprising a different layered active material and interfacing each other. Combining multiple layered active materials into the same structure and arranging these materials in specific ways allow achieving synergetic effects of their desirable characteristics. For example, a layered active material, which forms a stable solid electrolyte interface (SEI) layer, may be form an outer shell of a hybrid active material structure and interface with electrolyte. This shell may surround another layered active material, which has a higher capacity but would otherwise forma a less stable SEI layer. Furthermore, multiple layered active materials may be arranged into a stack, in which one of these materials may operate as an ionic and/or electronic conductor.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: July 6, 2021
    Assignee: GRU ENERGY LAB INC.
    Inventors: Song Han, Sa Zhou
  • Patent number: 11056679
    Abstract: Provided are methods of introducing additional lithium ions into lithium-ion electrochemical cells as well as positive electrodes, comprising these additional lithium ions. A method may involve introducing a temporary lithium additive into a positive electrode, such as mixing the additive into slurry used for coating the electrode. The positive electrode also comprises a positive active material, different from the temporary lithium additive and used as a source of primary lithium ions. The positive active material is operable to release and also later to receive lithium ions during cycling. The temporary lithium additive is operable to release additional lithium ions during its decomposition, but not to receive any lithium ions thereafter. The amount of these additional lithium ions may be selected based on expected lithium ion losses in the cell. The temporary lithium additive may decompose when applying a voltage between the electrodes, e.g., during initial cycling.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: July 6, 2021
    Assignee: GRU ENERGY LAB INC.
    Inventors: Song Han, Sa Zhou, Xiaohua Liu
  • Publication number: 20200044231
    Abstract: Provided are methods of introducing additional lithium ions into lithium-ion electrochemical cells as well as positive electrodes, comprising these additional lithium ions. A method may involve introducing a temporary lithium additive into a positive electrode, such as mixing the additive into slurry used for coating the electrode. The positive electrode also comprises a positive active material, different from the temporary lithium additive and used as a source of primary lithium ions. The positive active material is operable to release and also later to receive lithium ions during cycling. The temporary lithium additive is operable to release additional lithium ions during its decomposition, but not to receive any lithium ions thereafter. The amount of these additional lithium ions may be selected based on expected lithium ion losses in the cell. The temporary lithium additive may decompose when applying a voltage between the electrodes, e.g., during initial cycling.
    Type: Application
    Filed: July 17, 2019
    Publication date: February 6, 2020
    Applicant: GRU Energy Lab Inc.
    Inventors: Song Han, Sa Zhou, Xiaohua Liu
  • Publication number: 20200036030
    Abstract: Provided are hybrid active material structures for use in electrodes of electrochemical cells and methods of forming these structures. A hybrid active material structure comprises at least one first substructure and at least one second substructures, each comprising a different layered active material and interfacing each other. Combining multiple layered active materials into the same structure and arranging these materials in specific ways allow achieving synergetic effects of their desirable characteristics. For example, a layered active material, which forms a stable solid electrolyte interface (SEI) layer, may be form an outer shell of a hybrid active material structure and interface with electrolyte. This shell may surround another layered active material, which has a higher capacity but would otherwise forma a less stable SEI layer. Furthermore, multiple layered active materials may be arranged into a stack, in which one of these materials may operate as an ionic and/or electronic conductor.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 30, 2020
    Applicant: GRU Energy Lab Inc.
    Inventors: Song Han, Sa Zhou
  • Publication number: 20200036001
    Abstract: Provided are electrodes for use in electrochemical cells and active material components used to form these electrodes. Also provided are methods of forming these active material components as well as methods of forming these electrodes. An electrode comprises a current collector and an active layer, comprising active material structures and an inorganic conductive layer. The inorganic conductive layer coats and binds together these active material structures. Furthermore, the inorganic conductive layer also provides adhesion of the active layer to the current collector. The inorganic conductive layer has an electronic conductivity of at least 104 S/m and provides an electronic path among the active material structures and, in some examples, between the active material structures and the current collector. In some embodiments, the same inorganic conductive layer shared by multiple active material structures.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 30, 2020
    Applicant: GRU Energy Lab Inc.
    Inventors: Song Han, Sa Zhou, Xiaohua Liu, Xinghua Meng