Abstract: Provided is a hydrogen storage alloy which is characterized in that two or more crystal phases having different crystal structures are layered in a c-axis direction of the crystal structures. The hydrogen storage alloy is further characterized in that a difference between a maximum value and a minimum value of a lattice constant a in the crystal structures of the laminated two or more crystal phases is 0.03 ? or less.
Type:
Application
Filed:
August 8, 2007
Publication date:
July 15, 2010
Applicants:
GS Yuasa Corporation, National Institute of Advanced Industrial Science and Technology
Abstract: The object is to provide a nonaqueous-electrolyte battery having high charge/discharge efficiency and excellent high-rate performance. This subject is accomplished by using a nonaqueous electrolyte which comprises an organic solvent and a lithium salt dissolved therein and is characterized by containing at least one quaternary ammonium salt in an amount of 0.06 mol/L or larger and 0.5 mol/L or smaller. This effect is thought to be attributable to the following mechanism: in a relatively early stage (stage in which the negative-electrode potential is relatively noble) in a first charge step, a satisfactory protective coating film is formed on the negative electrode by the action of the quaternary ammonium salt and, hence, the organic solvent employed in the nonaqueous electrolyte is inhibited from decomposing.
Abstract: A nonaqueous electrolyte includes an organic solvent and a lithium salt dissolved in the organic solvent, and a quaternary ammonium salt in an amount of 0.06 mol/L or greater and 0.5 mol/L or less, the quaternary ammonium salt having a structure represented by (chemical formula 3): wherein R is an organic linking group or an organic linking group forming an aromatic ring, the organic linking groups each having a main chain which has 4-5 atoms and is constituted of at least one member selected from carbon, oxygen, nitrogen, sulfur, and phosphorus and having one single-bond end and one double-bond end; R1 is an alkyl group having 1-6 carbon atoms or an alkyl group in which at least one of the hydrogen atoms has been replaced by a fluorine atom; and X? is a fluorine-containing anion.
Abstract: A direct methanol type fuel cell system provided with a tank for storing an antifreeze that is injected into at least said unit cell or a cell stack and held in place at the time of stand-by operation of the direct methanol type fuel cell system. At the time of starting operation an oxidant gas is supplied to the cathode side and the antifreeze is removed from the unit cell or the cell stack. After starting operation, the passage between the antifreeze tank and the unit cell or the cell stack is closed and an aqueous solution of methanol is supplied as liquid fuel from a fuel tank to the anode side.
Abstract: A non-aqueous electrolyte battery comprising: a battery case containing aluminum; a positive electrode terminal attached to the battery case; and a negative electrode terminal attached to the battery case and insulated from the battery case, wherein the positive electrode terminal and the battery case are connected through a resistor having resistance of 1? to 1 M?. Otherwise, A non-aqueous electrolyte battery comprising: a battery case containing iron; a negative electrode terminal attached to the battery case; and a positive electrode terminal attached to the battery case and insulated from the battery case, wherein the negative electrode terminal and the battery case are connected through a resistor having resistance of 1? to 1 M?.
Abstract: The metal foil of the positive electrode 1a or the negative electrode 1b in the power generating element 1 is connected along the connecting plate portion 2b which is folded, twisted, and provided in a protruding condition from the main portion 2a of the current-collector connector 2; hence the shape of the current-collector connector 2 becomes easy to form, and a battery capable of enhancing current collection efficiency, reliability and workability can be provided.
Abstract: An object is to provide a positive electrode material capable of increasing a discharge capacity of a nonaqueous electrolyte secondary battery, a production method thereof, and the like.
Abstract: A positive active material is provided which can give a battery having a high energy density and excellent high-rate discharge performance and inhibited from decreasing in battery performance even in the case of high-temperature charge. Also provided is a non-aqueous electrolyte battery employing the positive active material. The positive active material contains a composite oxide which is constituted of at least lithium (Li), manganese (Mn), nickel (Ni), cobalt (Co), and oxygen (O) and is represented by the following chemical composition formula: LiaMnbNicCodOe (wherein 0<a?1.3, |b?c|?0.05, 0.6?d<1, 1.7?e?2.3, and b+c+d=1). The non-aqueous electrolyte battery has a positive electrode containing the positive active material, a negative electrode, and a non-aqueous electrolyte.
Abstract: Elution of a fuel electrode material into a fuel in a direct methanol fuel cell is monitored. The elution arises resulting from elution of a perfluorosulfonic acid polymer in the fuel electrode into the fuel in a high-concentration fuel equal to or more than 2 M or at an operating temperature equal to or more than 80° C. The electrode catalyst elutes into the fuel and the characteristic degrades. Operating conditions of the fuel cell, i.e., the fuel concentration and the operating temperature are limited to be less than 2 M and 80° C. or less, respectively. In addition, the elution characteristic is evaluated at the time of manufacture of the fuel cell and quality control is conducted. Further, existence of the elution is detected by a color of the fuel etc., and when the elution is detected, the upper limits of the operating temperature and the fuel concentration are decreased, so that further elution is prevented.
Abstract: Disclosed is a nonaqueous electrolyte secondary battery which is suppressed in increase of internal resistance, while having high capacity retention rate and small battery swelling even after a long use. Specifically disclosed is a method for manufacturing a nonaqueous electrolyte secondary battery, which is characterized by using a positive electrode containing a positive electrode active material having an ?-NaFeO2 crystal structure and the following chemical composition: LixMnaNibCocOd (wherein 0<x<1.3, a+b+c=1, 1.7?d?2.3), while satisfying |a?b|<0.03 and 0.33?c<1, a negative electrode, and a nonaqueous electrolyte containing an unsaturated sultone and a sulfate ester compound.
Type:
Application
Filed:
September 7, 2007
Publication date:
January 28, 2010
Applicant:
GS YUASA CORPORATION
Inventors:
Hanako Miyasaka, Takaaki Iguchi, Junichi Kuratomi, Sumio Mori
Abstract: A lead-acid battery which comprises a positive electrode, a negative electrode, a separator and an electrolyte, wherein the electrolyte contains volatile organic acid and the content of volatile organic acid is 250 mg or lower per liter of the electrolyte. The present invention can improve the performance of the lead-acid battery.
Abstract: An assembled battery monitoring device that detects presence of disconnection in wiring pulled from an assembled battery in which a plurality of electric cells are connected in series. The electric cells are connected respectively in parallel to auxiliary current channels each having a setting resistance value, and the presence of the disconnection in the wiring is detected based on a detection voltage when the switching device for auxiliary current channel is turned to the closed state.
Abstract: Gas generation of a non-aqueous electrolyte battery having a negative active material that intercalates/deintercalates lithium ions at a potential not lower than 1.2 V relative to the potential of lithium as negative electrode is suppressed. A non-aqueous electrolyte battery comprising a non-aqueous electrolyte containing an electrolyte salt and a non-aqueous solvent, a positive electrode and a negative electrode is characterized in that the main active material of said negative electrode is an active material that intercalates/deintercalates lithium ions at a potential not lower than 1.2 V relative to the potential of lithium and the auxiliary active material of said negative electrode is an active material that at least intercalates lithium ions at a potential lower than 1.
Abstract: A liquid fuel direct supply fuel cell system capable of being operated under optimal conditions. A plurality of cells each having an anode and a positive electrode disposed oppositely through an electrolytic film and being fed, respectively, with liquid fuel and oxidizing agent gas are connected in series as a power generating section (11), which is then provided with a sensor section (12) for detecting the concentration of the liquid fuel in association with a temperature detected by a temperature detecting element thus producing a cell stack (1), and a controller (7) controls high concentration fuel supply amount from a high concentration fuel tank (5) to a fuel tank (2) based on an output signal from the sensor section (12).
Abstract: It is an object of the present invention to provide an active material for lithium ion battery having an excellent discharge capacity in the potential flat part and a high-performance and long-life lithium ion battery, and particularly to provide a technology of improving voltage flatness. The present invention provides an active material for lithium ion battery represented by a composition formula: Li[Li(1-2x)/3MgxTi(5-x)/3]O4(0<x<1/2) in which a part of the element of lithium titanate is substituted with Mg, and a lithium ion battery using this active material as a negative electrode active material.
Abstract: A non-aqueous electrolyte battery suppresses gas generation in a non-aqueous electrolyte battery having a negative active material that intercalates and deintercalates lithium ions at a potential not lower than 1.2 V relative to the potential of lithium for the negative electrode thereof. The non-aqueous electrolyte battery comprises a non-aqueous electrolyte containing an electrolytic salt and a non-aqueous solvent, a positive electrode and a negative electrode having a negative active material that intercalates/deintercalates lithium ions at a potential not lower than 1.2 V relative to the potential of lithium and is characterized in that a film coat having a carbonate structure and a thickness of not less than 10 nm exists on the surface of said negative electrode and that the non-aqueous electrolyte battery is operated in a region of potential of the negative electrode higher than 0.8 V relative to the potential of lithium.
Abstract: Disclosed is a mixed material of lithium iron phosphate and carbon, which contains secondary particles as aggregates of lithium iron phosphate primary particles and a fibrous carbon which is present inside the secondary particles. An electrode containing such a mixed material, a battery comprising such an electrode, a method for producing such a mixed material, and a method for producing a battery are also disclosed.