Patents Assigned to Guardian Glass, LLC
-
Publication number: 20220019075Abstract: Certain example embodiments relate to an insulating glass (IG) unit. A spacer is interposed between first and second substrates. The spacer helps maintain the substrates in substantially parallel spaced apart relation to one another, and helps define a cavity therebetween. First and second exterior surfaces of the spacer face interior surfaces of the first and second substrates, respectively. Third and fourth exterior surface of the spacer face towards and away from the cavity, respectively. A membrane is provided over at least a part of the fourth exterior surface of the spacer. A pin protrudes through holes in the third and fourth exterior surfaces of the spacer, and through the membrane. The pin is formed from an electrically conducting material. A structural seal for the IG unit is provided external to the spacer and at least partially surrounds a portion of the pin that protrudes through the membrane.Type: ApplicationFiled: July 15, 2020Publication date: January 20, 2022Applicant: GUARDIAN GLASS, LLCInventors: John Matuszewski, Lance Altizer
-
Publication number: 20220018181Abstract: Certain example embodiments relate to circuitry for controlling dynamic shades and/or associated methods. An insulating glass (IG) unit includes a spacer system helping to maintain first and second substrates in substantially parallel spaced apart relation to one another and to define a gap therebetween. The shade is interposed between the first and second substrates. It includes a first conductive layer provided on the interior major surface of the first substrate; and a shutter including at least one polymer substrate, first and second conductive coatings, and first and second dielectric layers. The at least one polymer substrate is extendible to a shutter closed position and retractable to a shutter open position. A control circuit includes a boosting transformer (e.g., a flyback transformer) coupled to a power source and the shade, with the boosting transformer being controllable to produce a voltage for charging the shade and to discharge accumulated shade capacitance.Type: ApplicationFiled: July 15, 2020Publication date: January 20, 2022Applicant: GUARDIAN GLASS, LLCInventors: Jeffrey Koskulics, Uzair Ahmed
-
Publication number: 20220018184Abstract: Certain example embodiments relate to a motor-driven dynamic shade provided in an insulating glass (IG) unit, and/or associated methods. A spacer system helps maintain first and second substrates in substantially parallel spaced apart relation to one another and defines a gap therebetween. A shade and a motor are provided in the gap. The motor, provided close to a first peripheral edge of the IG unit, is dynamically controllable to cause the shade to extend towards a second peripheral edge of the IG unit opposite the first peripheral edge and to cause the shade to retract from the second peripheral edge towards the first peripheral edge.Type: ApplicationFiled: July 15, 2020Publication date: January 20, 2022Applicant: GUARDIAN GLASS, LLCInventors: Lindsay HORN, John Matuszewski, Jason Theios
-
Patent number: 11225826Abstract: Certain example embodiments relate to the use of a ceramic frit that dissolves an already-applied thin film coating (disposed via a physical vapor deposition (PVD) process such as sputtering, or other suitable process). In certain example embodiments, the ceramic frit is aggressive in chemically removing the coating on which it is disposed, e.g., when exposed to high temperatures. The frit advantageously fuses well with the glass, provides aesthetically desired colorations, and/or enables components (e.g., insulated glass (IG) unit spacers) to be reliably mounted thereon, in certain example embodiments. Associated coated articles, IG units, methods, etc., are also contemplated herein.Type: GrantFiled: February 24, 2014Date of Patent: January 18, 2022Assignee: GUARDIAN GLASS, LLC.Inventors: Ralf Greiner, Mario Olbrich, Matthew S. Walp
-
Publication number: 20220004091Abstract: A projection screen including a capacitive touch panel, such as a projected capacitive touch panel. The touch panel includes first and second glass substrates, one of which is patterned (e.g., etched with acid or the like) to form a diffuser. A conductive coating is formed on the patterned surface of the diffuser glass substrate, and is patterned into a plurality of electrodes for the touch panel. The system, including an optional projector, may be used as an interactive transparent display for augmented reality applications such as storefronts. The touch panel may also be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like.Type: ApplicationFiled: August 23, 2021Publication date: January 6, 2022Applicant: GUARDIAN GLASS, LLCInventors: Willem DEN BOER, Jason J. BLUSH, Eric W. AKKASHIAN
-
Patent number: 11174676Abstract: Certain example embodiments relate to electric, potentially-driven shades usable with insulating glass (IG) units, IG units including such shades, and/or associated methods. In such a unit, a dynamic shade is located between the substrates defining the IG unit, and is movable between retracted and extended positions. The dynamic shade includes on-glass layers including a transparent conductor and an insulator or dielectric film, as well as a shutter. The shutter includes a resilient polymer, a conductor, and optional ink. The shutter extends towards a bottom stopper in a controlled manner by virtue of a conductivity difference that is introduced in an area proximate to the bottom stopper. This conductivity difference affects the electrostatic forces in that area in a manner that can be used to alter shutter extension speed.Type: GrantFiled: February 3, 2020Date of Patent: November 16, 2021Assignee: GUARDIAN GLASS, LLCInventor: Yabei Gu
-
Patent number: 11168023Abstract: An insulating glass (IG) window unit including first and second glass substrates that are spaced apart from each other. At least one of the glass substrate has a triple silver low-emissivity (low-E) coating on one major side thereof, and a dielectric coating for improving angular stability on the other major side thereof.Type: GrantFiled: April 20, 2020Date of Patent: November 9, 2021Assignee: GUARDIAN GLASS, LLCInventors: Guowen Ding, Willem Den Boer, Yiwei Lu, Cesar Clavero, Daniel Schweigert, Sang Lee
-
Patent number: 11148228Abstract: Certain example embodiments of this invention relate to techniques for laser ablating/scribing peripheral edges of a coating (e.g., a low-emissivity, mirror, or other coating) on a glass or other substrate in a pre- or post-laminated assembly, pre- or post-assembled insulated glass unit, and/or other product, in order to slow or prevent corrosion of the coating. For example, a 1064 nm or other wavelength laser may be used to scribe lines into the metal and/or metallic layer(s) in a low-emissivity or other coating provided in an already-laminated or already-assembled insulated glass unit or other product, e.g., around its periphery. The scribe lines decrease electron mobility from the center of the coating to the environment and, thus, slow and sometimes even prevent the onset of electrochemical corrosion. Associated products, methods, and kits relating to same also are contemplated herein.Type: GrantFiled: July 10, 2017Date of Patent: October 19, 2021Assignee: GUARDIAN GLASS, LLCInventors: Vijayen S. Veerasamy, Robert A. Vandal
-
METHOD OF MAKING COATED ARTICLE HAVING ANTIBACTERIAL AND/OR ANTIFUNGAL COATING AND RESULTING PRODUCT
Publication number: 20210317561Abstract: Techniques are provided for making a coated article including an antibacterial and/or antifungal coating. In certain example embodiments, the method includes providing a first sputtering target including Zr; providing a second sputtering target including Zn; and co-sputtering from at least the first and second sputtering targets in the presence of nitrogen to form a layer including ZnxZryNz on a glass substrate. These layers may be heat-treated or thermally tempered to form a single layer including ZnxZryOz. In other examples, two discrete layers of Zn and Zr may be formed. The coating may be heated or tempered to form a single layer including ZnxZryOz. Coated articles made using these methods may have antibacterial and/or antifungal properties.Type: ApplicationFiled: April 16, 2021Publication date: October 14, 2021Applicant: GUARDIAN GLASS, LLCInventors: Rudolph Hugo Petrmichl, Jiangping Wang, Jason Barber -
Patent number: 11112538Abstract: A first coating is provided on a first side of a glass substrate, and a second coating is provided on a second side of the glass substrate, directly or indirectly. The coatings are designed to reduce color change of the overall coated article, from the perspective of a viewer, upon heat treatment (e.g., thermal tempering and/or heat strengthening) and/or to have respective reflective coloration that substantially compensates for each other. For instance, from the perspective of a viewer of the coated article, the first coating may experience a positive a* color value shift due to heat treatment (HT), while the second coating experiences a negative a* color shift due to the HT. Thus, from the perspective of the viewer, color change due to HT (e.g., thermal tempering) can be reduced or minimized, so that non-heat-treated versions and heat treated versions of the coated article appear similar to the viewer.Type: GrantFiled: February 2, 2017Date of Patent: September 7, 2021Assignees: GUARDIAN GLASS, LLC, GUARDIAN EUROPE S.A.R.L.Inventors: Jian-gang Weng, Adam Burghardt, Ting Huang, Xuequn Hu, Cyrus Baker, Suresh Devisetti, Gyorgy Vikor
-
Patent number: 11099474Abstract: A projection screen including a capacitive touch panel, such as a projected capacitive touch panel. The touch panel includes first and second glass substrates, one of which is patterned (e.g., etched with acid or the like) to form a diffuser. A conductive coating is formed on the patterned surface of the diffuser glass substrate, and is patterned into a plurality of electrodes for the touch panel. The system, including an optional projector, may be used as an interactive transparent display for augmented reality applications such as storefronts. The touch panel may also be used in applications such as capacitive touch panels for controlling showers, appliances, vending machines, electronics, electronic devices, and/or the like.Type: GrantFiled: January 20, 2020Date of Patent: August 24, 2021Assignee: GUARDIAN GLASS, LLCInventors: Willem Den Boer, Jason Blush, Eric W. Akkashian
-
Publication number: 20210256408Abstract: In certain example embodiments, moisture sensors, defoggers, etc., and/or related methods, are provided. More particularly, certain example embodiments relate to moisture sensors and/or defoggers that may be used in various applications such as, for example, refrigerator/freezer merchandisers, vehicle windows, building windows, etc. When condensation or moisture is detected, an appropriate action may be taken (e.g., actuating windshield wipers, turning on a defroster, triggering the heating of a merchandiser door or window, etc.). Bayesian approaches optionally may be implemented in certain example embodiments in an attempt to improve moisture detection accuracy. For instance, models of various types of disturbances may be developed and, based on live data and a priori information known about the model, a probability of the model being accurate is calculated. If a threshold value is met, the model may be considered a match and, optionally, a corresponding appropriate action may be taken.Type: ApplicationFiled: February 15, 2021Publication date: August 19, 2021Applicant: GUARDIAN GLASS, LLCInventor: Vijayen S. VEERASAMY
-
Publication number: 20210254397Abstract: Certain example embodiments relate to electric, potentially-driven shades usable with insulating glass (IG) units, IG units including such shades, and/or associated methods. In such a unit, a dynamic shade is located between the substrates defining the IG unit, and is movable between retracted and extended positions. The dynamic shade includes on-glass layers including a transparent conductor and an insulator or dielectric film, as well as a shutter. The shutter includes a resilient polymer, a conductor, and optional ink. The on-glass transparent conductor may be patterned into different areas. If shutter coil skew is detected, voltage(s) may be applied one or more areas of the on-glass transparent conductor to compensate for or otherwise attempt to correct the detected coil skew.Type: ApplicationFiled: February 17, 2020Publication date: August 19, 2021Applicant: GUARDIAN GLASS, LLCInventors: Yabei Gu, ROLF PETRMICHL
-
Patent number: 11092726Abstract: A window unit is designed to prevent or reduce bird collisions therewith. The window unit may include first and second substrates (e.g., glass substrates) spaced apart from one another, wherein at least one of the substrates supports an ultraviolet (UV) reflecting coating for reflecting UV radiation so that birds are capable of more easily seeing the window. The UV reflecting coating is preferably patterned so that it is not provided across the entirety of the window unit. By making the window more visible to birds, bird collisions and bird deaths can be reduced. The UV reflecting coating is designed to have high UV reflectance across a large range of viewing angles.Type: GrantFiled: June 19, 2020Date of Patent: August 17, 2021Assignee: GUARDIAN GLASS, LLCInventors: Francis Wuillaume, Jian-Gang Weng
-
Publication number: 20210246069Abstract: A coated glass substrate is disclosed. The coated glass substrate includes a coating containing at least one metal oxide containing a zinc oxide. The zinc of the zinc oxide is present in an amount of from 5 wt. % to 50 wt. % as determined according to XPS. The coated glass substrate has area surface roughness Sa or Sq of from about 5 nm to about 1,500 nm as determined via atomic force microscopy.Type: ApplicationFiled: June 6, 2019Publication date: August 12, 2021Applicant: Guardian Glass, LLCInventor: Liang Liang
-
Publication number: 20210238913Abstract: Certain example embodiments relate to electric, potentially-driven shades usable with insulating glass (IG) units, IG units including such shades, and/or associated methods. In such a unit, a dynamic shade is located between the substrates defining the IG unit, and is movable between retracted and extended positions. The dynamic shade includes on-glass layers including a transparent conductor and an insulator or dielectric film, as well as a shutter. The shutter includes alternating conductive and dielectric layers, supported by one or more resilient polymer-based layers. A first set of electrostatic forces help cause the shutter to extend and remain in an extended position, whereas an electric field can be setup to help encourage the retraction of the shutter from an extended or at least partially extended position.Type: ApplicationFiled: February 3, 2020Publication date: August 5, 2021Applicant: GUARDIAN GLASS, LLCInventor: JEFFREY KOSKULICS
-
Publication number: 20210238921Abstract: Certain example embodiments relate to electric, potentially-driven shades usable with insulating glass (IG) units, IG units including such shades, and/or associated methods. In such a unit, a dynamic shade is located between the substrates defining the IG unit, and is movable between retracted and extended positions. The dynamic shade includes on-glass layers including a transparent conductor and an insulator or dielectric film, as well as a shutter. The shutter includes a resilient polymer, a conductor, and optional ink. The shutter extends towards a bottom stopper in a controlled manner by virtue of a conductivity difference that is introduced in an area proximate to the bottom stopper. This conductivity difference affects the electrostatic forces in that area in a manner that can be used to alter shutter extension speed.Type: ApplicationFiled: February 3, 2020Publication date: August 5, 2021Applicant: GUARDIAN GLASS, LLCInventor: YABEI GU
-
Publication number: 20210238914Abstract: Certain example embodiments relate to electric, potentially-driven shades usable with insulating glass (IG) units, IG units including such shades, and/or associated methods. In such a unit, a dynamic shade is located between the substrates defining the IG unit, and is movable between retracted and extended positions. The dynamic shade includes on-glass layers including a transparent conductor and an insulator or dielectric film, as well as a shutter. The shutter includes a resilient polymer-based layer and a conductive layer. A first voltage is applied to the transparent conductors to cause the shutter to extend to a closed position, and a second voltage is applied to a stop to electrostatically hold the shutter in the closed position. The first and second voltage levels can be reduced once the shutter is extended to the closed position, the reduction to the first voltage level being greater than the reduction to the second voltage level.Type: ApplicationFiled: December 30, 2020Publication date: August 5, 2021Applicant: GUARDIAN GLASS, LLCInventors: JEFFREY KOSKULICS, JOSHUA FINCH, DAVID LAWRENCE
-
Publication number: 20210222486Abstract: A window unit (e.g., insulating glass (IG) window unit) is designed to reduce bird collisions therewith. The window unit may include two or three substrates and at least one of the substrates supports an ultraviolet (UV) reflecting coating. The UV reflecting coating may be patterned by a laser (e.g., femto laser) which is used to either entirely or partially remove (e.g., via laser ablation) a portion of the coating in a pattern, so that after patterning by the laser the patterned coating is either not provided across the entirety of the window unit and/or is non-uniform in UV reflection across the window unit so that the UV reflection differs across different areas of the window thereby making the window unit more visible to birds which can see UV radiation and detect that pattern.Type: ApplicationFiled: August 15, 2019Publication date: July 22, 2021Applicant: GUARDIAN GLASS, LLCInventor: VICTOR VEERASAMY
-
Publication number: 20210215620Abstract: A method and/or system is provided for detecting inclusions (e.g., nickel sulfide based inclusions/defects) in soda-lime-silica based glass, such as float glass. In certain example instances, during and/or after the glass-making process, following the stage in the float process where the glass sheet is formed and floated on a molten material (e.g., tin bath) and cooled or allowed to cool such as via an annealing lehr, light is directed at the resulting glass and reflection of various wavelengths (e.g., red and blue wavelengths) is analyzed to detect inclusions.Type: ApplicationFiled: January 20, 2021Publication date: July 15, 2021Applicant: GUARDIAN GLASS, LLCInventors: Alexey KRASNOV, Xuequn HU