Abstract: A method of generating a keyless digital multi-signature is provided. The method includes receiving multiple signature generation requests from one or more client computers, building subtrees based on the signature generation requests, and constructing a search tree including the subtrees. The method also includes assigning explicit length tags to leaf nodes of the search tree to balance the search tree and applying a hash function to each of the search tree nodes. The root hash value and the height of the search tree make up a generated aggregate signature request, followed by receiving an aggregate signature based on the aggregate signature request. The keyless digital multi-signature is generated based on the aggregate signature and contains an implicit length tag to verify that the number of signature generation requests is limited. The aggregate signature is generated if the height of the search tree does not exceed a predetermined height limitation.
Type:
Application
Filed:
June 20, 2011
Publication date:
December 20, 2012
Applicant:
GUARDTIME IP HOLDINGS LIMITED
Inventors:
Ahto Buldas, Andres Kroonmaa, Märt Saarepera
Abstract: A system and method for generating a digital certificate is provided wherein a new digital record is received and is assigned a sequence value. A first composite digital value is generated by applying a first deterministic function to the digital records stored in a repository. The sequence value and first composite digital value are included in a first certificate. After the digital record is added to the repository, a second composite digital value is generated by applying a second deterministic function to the digital records in the repository. This second composite digital value, and a composite sequence value, are published. An interval digital value which is based upon the first and second composite digital values, and the sequence value, are included in a second certificate which thus verifies the authenticity and sequence value of the digital record.
Abstract: A system and method for generating a digital certificate is provided wherein a new digital record is received and is assigned a sequence value. A first composite digital value is generated by applying a first deterministic function to the digital records stored in a repository. The sequence value and first composite digital value are included in a first certificate. After the digital record is added to the repository, a second composite digital value is generated by applying a second deterministic function to the digital records in the repository. This second composite digital value, and a composite sequence value, are published. An interval digital value which is based upon the first and second composite digital values, and the sequence value, are included in a second certificate which thus verifies the authenticity and sequence value of the digital record.
Abstract: A system and method for generating a digital certificate is provided wherein a new digital record is received and is assigned a sequence value. A first composite digital value is generated by applying a first deterministic function to the digital records stored in a repository. The sequence value and first composite digital value are included in a first certificate. After the digital record is added to the repository, a second composite digital value is generated by applying a second deterministic function to the digital records in the repository. This second composite digital value, and a composite sequence value, are published. An interval digital value which is based upon the first and second composite digital values, and the sequence value, are included in a second certificate which thus verifies the authenticity and sequence value of the digital record.
Abstract: A system and method for generating a digital certificate is provided wherein a new digital record is received and is assigned a sequence value. A first composite digital value is generated by applying a first deterministic function to the digital records stored in a repository. The sequence value and first composite digital value are included in a first certificate. After the digital record is added to the repository, a second composite digital value is generated by applying a second deterministic function to the digital records in the repository. This second composite digital value, and a composite sequence value, are published. An interval digital value which is based upon the first and second composite digital values, and the sequence value, are included in a second certificate which thus verifies the authenticity and sequence value of the digital record.