Patents Assigned to Guy P. Curtis and Frances L. Curtis Trust
  • Patent number: 11565113
    Abstract: A system and method for improving heart contractions during a heart function cycle (heartbeat) of a patient requires detecting a local electrical event (depolarization) during the cycle. This local electrical event is then used to trigger a stimulation interval ?t at a time t0. Importantly, the stimulation interval ?t is set to end at a time t1 during the absolute refractory period of the heart function cycle. At the time t1, a stimulator is triggered to stimulate a local sympathetic nerve on the epicardial surface of the heart. With this stimulation the sympathetic nerve secretes norepinephrine to improve a subsequent contraction of the heart.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: January 31, 2023
    Assignee: GUY P. CURTIS AND FRANCES L. CURTIS TRUST
    Inventor: Guy P. Curtis
  • Patent number: 11167145
    Abstract: A system for monitoring and evaluating the ventricular contractility of a heart muscle includes a device for electrically stimulating the heart muscle of a patient, and an extracorporeal blood pressure sensor. A record, responsive to stimulated ventricular contractions, is created by the pressure sensor. The response record is then evaluated to identify a pressure/time, rate-change in arterial pressure (dp/dt) that results within the time duration of a ventricular contraction in a cardiac cycle. In turn, dp/dt is evaluated as an indicator of ventricular contractility and the health of the patient's heart muscle.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: November 9, 2021
    Assignee: Guy P. Curtis and Frances L. Curtis Trust
    Inventor: Guy P. Curtis
  • Patent number: 10232184
    Abstract: A system is provided for testing the electrical integrity of an implanted pacemaker or defibrillator lead. The system includes a container holding an electrically conductive solution, such as a saline solution. A voltage source and two electrodes are provided to pass an electrical current through the solution. To use the system, the proximal end of the electrical lead is disconnected from the implanted electronic device, passed through the saline solution and then electrically connected to a device/monitor. During testing, the device/monitor sends a test pulse through the lead and monitors electrical activity in the lead. To test sequential locations along the length of the proximal segment, the segment is drawn through the saline solution and between the electrodes while test pulses are sent and monitored. The monitor detects abnormal electrical activity in the lead indicative of a break in lead insulation.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 19, 2019
    Assignee: THE GUY P. CURTIS AND FRANCES L. CURTIS TRUST
    Inventor: Guy P. Curtis
  • Patent number: 10124152
    Abstract: A system and method for perfusing a liquid medicament into tissue of a patient requires a catheter having a distal barrier and a proximal barrier mounted on the catheter. A perfusion section is formed into the catheter between these barriers. By way of example of a typical operation, the catheter is advanced through the vasculature of a patient and into the coronary sinus. Advancement continues until the barriers of the catheter are positioned to straddle the ostium of the left atrial vein. As so positioned, a perfusion chamber is established in the coronary sinus between the barriers. Also, the perfusion chamber is positioned for fluid communication with the left atrial vein. Liquid medicament can then be transferred from a source into the perfusion chamber for perfusion of the medicament into tissue of the atrial vein.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: November 13, 2018
    Assignee: GUY P. CURTIS AND FRANCES L. CURTIS TRUST
    Inventor: Guy P. Curtis
  • Patent number: 10117982
    Abstract: A system for improving heart muscle response during a pre-ejection phase in the heart muscle pumping cycle requires a catheter having a pressure transducer and a fluid device mounted at its distal end. Also included is a pump connected to the proximal end of the catheter in fluid communication with the fluid device. A computer will activate the pump in response to a predetermined signal from the pressure transducer to inject and maintain an increased fluid volume in the pumping chamber of the heart for a predetermined time interval ?t during the pre-ejection phase. This supplements the isometric pressure in the heart's pumping chamber in preparation for a subsequent ejection of blood from the pumping chamber.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: November 6, 2018
    Assignee: Guy P. Curtis and Frances L. Curtis Trust
    Inventor: Guy P. Curtis
  • Patent number: 9480825
    Abstract: A system for anchoring a distal end of a catheter at a treatment site includes an elongated catheter shaft that is formed with a lumen and two cone shaped balloon membranes. For the system, the proximal and distal ends of the balloon membranes are affixed to an outer surface of the shaft to establish balloons having inflation chambers between the membranes and the shaft. A first membrane portion of a first balloon membrane extends from the distal end of the membrane end to a balloon membrane midsection and a second membrane portion extends from the midsection to the proximal membrane end. To establish the proper shape for the inflated balloon, the second membrane portion is configured to establish a cone angle, ?, (relative to a proximally directed portion of the longitudinal axis) that is less than or equal to ninety degrees (??90 degrees).
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: November 1, 2016
    Assignee: THE GUY P. CURTIS AND FRANCES L. CURTIS TRUST
    Inventor: Guy P. Curtis
  • Patent number: 8951204
    Abstract: A system for continuously monitoring the blood pressure of a patient over an extended time interval requires using a blood pressure measuring unit (e.g. a sphygmomanometer) to calibrate an oximeter. Specifically, the oximeter is used to continuously detect and measure amplitudes for each blood flow pulse of the patient. Periodically, the sphygmomanometer is used to measure blood pressures (systolic and diastolic) in an artery of the patient. Immediately after the measurement cycle is completed, a computer correlates the measured systolic pressure with the pulse amplitude that is detected by the oximeter. Thereafter, the pulse amplitudes that are detected by the oximeter are used as indications of variations in the systolic pressure during the extended time interval that follows.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: February 10, 2015
    Assignee: The Guy P. Curtis and Frances L. Curtis Trust
    Inventor: Guy P. Curtis