Patents Assigned to GWANJU INSTITUTE OF SCIENCE
  • Patent number: 9811918
    Abstract: An apparatus and method of estimating an image optical flow are provided. The method includes receiving temporally-consecutive first and second images; calculating rates of change of brightness values of pixels in the received temporally-consecutive first and second images; calculating a first optical flow estimation result value of a first pixel within the first image and a second optical flow estimation result value of a second pixel within the second image by using the calculated rates of change; comparing the first optical flow estimation result value with the second optical flow estimation result value; and correcting the first optical flow estimation result value and the second optical flow estimation result value by using a result of the comparison.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: November 7, 2017
    Assignees: SAMSUNG ELECTRONICS CO., LTD., GWANJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young-su Moon, Kuk-jin Yoon, Jae-Hyun Kim
  • Publication number: 20150102831
    Abstract: A probing assembly includes a TDR probe coupling a time-domain reflectometry (TDR) device with a semiconductor device including a transistor therein, the transistor having a gate electrode, a source electrode, and a drain electrode on a substrate, wherein the TDR probe includes a first probe tip connecting the gate electrode to a signal line of the TDR device, and second to fourth probe tips connecting the source electrode, the drain electrode, and a bulk region of the substrate to ground lines of the TDR device, respectively.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 16, 2015
    Applicant: GWANJU INSTITUTE OF SCIENCE
    Inventors: Byoung-Hun LEE, Yong-Hun KIM, Young-Gon LEE
  • Patent number: 8779411
    Abstract: The present disclosure provides a light emitting diode and a method of manufacturing the same. The light emitting diode includes a graphene layer on a second conductive semiconductor layer and a plurality of metal nanoparticles formed on some region of the graphene layer, whereby adhesion between the second conductive semiconductor layer comprised of an inorganic material and the graphene layer is enhanced, thereby securing stability and reliability of the light emitting diode. In addition, the light emitting diode allows uniform spreading of electric current, thereby allowing stable emission of light through a surface area of the light emitting diode.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: July 15, 2014
    Assignee: Gwanju Institute of Science and Technology
    Inventors: Dong Seon Lee, Jae Phil Shim, Seong Ju Park, Min Hyeok Choe, Do Hyung Kim, Tak Hee Lee
  • Publication number: 20110152500
    Abstract: The present invention deals with a bipodal-peptide binder that specifically binds with a target including (a) a structure stabilizing region that includes parallel, antiparallel or parallel and antiparallel amino acid strands wherein interstrand non-covalent bonds are formed; and (b) a target binding region I and a target binding region II that are bonded at both terminals of said structure stabilizing region and respectively include n and m amino acids, and a method of preparing same; the bipodal-peptide binder of the present invention exhibits the KD value (dissociation constant) of a very low level (for example, nM level) and, therefore, exhibits very high affinity toward a target. The bipodal-peptide binder of the present invention has applications not only in pharmaceuticals but also in in-vivo imaging, in vitro cell imaging, and drug delivery targeting, and can be very usefully employed as an escort molecule.
    Type: Application
    Filed: October 20, 2009
    Publication date: June 23, 2011
    Applicant: Gwanju Institute of Science and Technology
    Inventors: Sang Yong Jon, Sung Hyun Kim, Se Ho Park