Abstract: The system described herein is particularly adapted to convert mechanical energy from a wind or hydraulic driven turbine into electric energy and comprises: an exciter generator and a main generator in a housing traversed by a rotatable shaft; the exciter generator consists of permanent magnet mounted to the housing envelope and of a rotor mounted to the shaft and having a one-phase winding, the rotor being made of non-magnetic material to eliminate cogging and static torque associated with permanent magnet excitation; the main generator consists of a three-phase stator winding on a magnetic core mounted to the housing envelope and of a pole-type rotor mounted to the shaft, the rotor having a winding wound on a magnetic core; a rectifying bridge is rotatably mounted to the shaft and is connected to the one-phase winding of the rotor of the exciter generator and to the winding of the main generator rotor so that the rotation of the shaft as a result of mechanical energy generates a three-phase electric energy
Abstract: The disclosure herein describes an apparatus for analyzing a physical quantity, such as current, and for providing an indication of this quantity to an actuating element, for example a relay; a value of the physical quantity is compared to two preadjusted reference points and, as a result of this comparison, the actuating element is either energized, de-energized or remains unchanged; the two reference points are entirely independent from one another and either one can be made greater than the other; a particular application for this invention is for actuating a current relay.
Abstract: The specification discloses an apparatus and a method for regulating the power factor in an electrical distributing-network line; according to one embodiment of the invention, the active line power is measured by means of a transducer, the output from which is a continuous voltage proportional to the active power supplied by the line; the reactive power of the line is then measured by means of a second transducer, the output from which is also a continuous voltage proportional to the reactive power supplied by the line; the voltage supplied by the active-power transducer is then divided by voltage dividers in order to obtain two reference voltages L.sub.1, L.sub.2, the values of which indicate the fixed limits for the line power factor; the voltage supplied by the reactive-power transducer is then compared with reference voltages L.sub.1, L.sub.
Abstract: The control system permits limiting the electrical demand of a distribution network to a desired maximum value by regulating the temperature of one or more thermal loads with heating or cooling elements; this system includes: means for measuring the instantaneous demand of the network; means for measuring the instantaneous temperature of each of the thermal loads; means for comparing the demand of the network to the desired maximum value; means for comparing the measured temperature to the desired temperature for each of the thermal loads; and means for disconnecting or for connecting in response to the information obtained by the comparison, a fraction of the elements which is proportional to the difference between the measured temperature and the desired temperature.
Abstract: A correction system for regulating the power factor of an electrical distribution network in which the phase difference between the potential V and the current I of a distribution line is measured. The voltage V and current I are detected, the phase difference between V and I measured, and the measured phase difference compared with first and second predetermined reference limits. When the measured phase difference is less than a first predetermined reference limit, capacitive loads may be added to the network, and when the phase difference exceeds a second reference limit greater than the first limit, the capacitive loads may be disconnected from the network. The actual demand is monitored and the capacitive loads connected only when the actual demand exceeds a predetermined demand value.