Patents Assigned to HADAL, INC.
  • Patent number: 9529082
    Abstract: The application relates to bi-static or multi-static holographic navigation systems, including methods of localizing an emitter or receiver with high precision relative to the sea floor. The system and methods can be used with a fully active sonar or radar system using well synchronized transmitters and receivers. The system and methods can be used with a passive sonar or radar system localizing a transmitter or a receiver based on poorly timed received signals.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: December 27, 2016
    Assignee: Hadal, Inc.
    Inventor: Richard J. Rikoski
  • Patent number: 9399503
    Abstract: Systems and methods are described herein for a variable-depth sonar. A null in the frequency response between a first and second operating frequency band is identified. A center operating frequency for each of the first and the second operating band is adjusted based on the ambient pressure. Furthermore, the velocity state of a vehicle may be calculated using periodic velocity updates. At least one transducer transmits a first signal in a first direction, and a Doppler sensor receives an echo of the first signal. The vehicle is turned in a second direction, and the at least one transducer transmits a second signal in the second direction. Using the first and the second velocity measurement, a vehicle velocity state is calculated.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 26, 2016
    Assignee: Hadal, Inc.
    Inventor: Richard J. Rikoski
  • Patent number: 9321510
    Abstract: Systems and methods are described herein for launching, recovering, and handling a large number of vehicles on a ship to enable lower cost ocean survey. In one aspect, the system may include a shipping container based system with an oil services vessel. The vessel may include rolling systems through end to end shipping containers. One or more columns of containers may be accessed using a crane, an A-frame, or any other suitable transportation system. The system may enable the ability to launch or recover more than one vehicle using the launch and recovery system (e.g., AUVs, buoys, seaplanes, autonomous surface vessels, etc.). In one configuration, the system includes a stacking/elevator system to place the vehicles onto a second or higher layer of containers. The system may allow for modularized deployment of the vehicles, launch and recovery system, operation center, and more from self-contained shipping containers.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 26, 2016
    Assignee: Hadal, Inc.
    Inventors: Richard J. Rikoski, Robert S. Damus
  • Patent number: 9180940
    Abstract: Systems and methods for a robust underwater vehicle are described herein. A robust underwater vehicle may include a force-limiting coupler connecting an actuation system to an actuation fin. The force-limiting coupler may be configured to break away from the actuation system upon receiving a threshold force. The robust underwater vehicle may also comprise hull sections connected by a threaded turnbuckle. Carbon-fiber axial strength members may mate with the threaded turnbuckle to pull the hull sections together to a specified preload tension. The robust underwater vehicle may also include a blazed sonar array protected by a carbon fiber bow including a plurality of slits. The plurality of slits may provide significant protection to the sonar array while simultaneously allowing one or more transducers to transmit sonar signals in a two-dimensional plane.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 10, 2015
    Assignee: Hadal, Inc.
    Inventors: Richard J. Rikoski, Robert S. Damus, Jonathan Pompa, Dylan Owens, Richard Jenkins
  • Patent number: 9103938
    Abstract: The systems and methods described herein relate to systems and methods for synthetic aperture sonar (SAS) or radar including simultaneous localization and mapping (SLAM) for holographic navigation.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 11, 2015
    Assignee: Hadal, Inc.
    Inventor: Richard J. Rikoski
  • Patent number: 9103937
    Abstract: The systems and methods described herein relate to systems and methods for synthetic aperture sonar (SAS) or radar including high-frequency holographic navigation.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 11, 2015
    Assignee: Hadal, Inc.
    Inventor: Richard J. Rikoski
  • Patent number: 9036452
    Abstract: The systems and methods described herein relate to systems and methods for synthetic aperture sonar (SAS) or radar including seismic surveying. The systems may include a first number of a plurality of acoustic transmitter elements mounted on one or more vehicles, and a second number of a plurality of acoustic receiver elements mounted on one or more vehicles. Each of the vehicles may include a processor having a synthetic aperture image of a portion of the underwater terrain. The synthetic aperture image may include acoustic data obtained from prior synthetic aperture sonar imaging of the underwater terrain. The plurality of vehicles are arranged to form a planar synthetic aperture sonar array having a third number of phase centers. The third number of phase centers is equal to the first number multiplied by the second number. The transmitters in such systems may be configured to generate orthogonal acoustic signals.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 19, 2015
    Assignee: Hadal, Inc.
    Inventor: Richard J. Rikoski
  • Publication number: 20140345511
    Abstract: Systems and methods are described herein for launching, recovering, and handling a large number of vehicles on a ship to enable lower cost ocean survey. In one aspect, the system may include a shipping container based system with an oil services vessel. The vessel may include rolling systems through end to end shipping containers. One or more columns of containers may be accessed using a crane, an A-frame, or any other suitable transportation system. The system may enable the ability to launch or recover more than one vehicle using the launch and recovery system (e.g., AUVs, buoys, seaplanes, autonomous surface vessels, etc.). In one configuration, the system includes a stacking/elevator system to place the vehicles onto a second or higher layer of containers. The system may allow for modularized deployment of the vehicles, launch and recovery system, operation center, and more from self-contained shipping containers.
    Type: Application
    Filed: March 13, 2014
    Publication date: November 27, 2014
    Applicant: HADAL, INC.
    Inventors: Richard J. Rikoski, Robert S. Damus
  • Publication number: 20140328141
    Abstract: Systems and methods are described herein for a variable-depth sonar. A null in the frequency response between a first and second operating frequency band is identified. A center operating frequency for each of the first and the second operating band is adjusted based on the ambient pressure. Furthermore, the velocity state of a vehicle may be calculated using periodic velocity updates. At least one transducer transmits a first signal in a first direction, and a Doppler sensor receives an echo of the first signal. The vehicle is turned in a second direction, and the at least one transducer transmits a second signal in the second direction. Using the first and the second velocity measurement, a vehicle velocity state is calculated.
    Type: Application
    Filed: March 14, 2014
    Publication date: November 6, 2014
    Applicant: HADAL, INC.
    Inventor: Richard J. Rikoski
  • Patent number: 8879357
    Abstract: The systems and methods described herein relate to systems and methods for synthetic aperture sonar (SAS) or radar including the use of orthogonal signals with SAS.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: November 4, 2014
    Assignee: Hadal, Inc.
    Inventor: Richard J. Rikoski
  • Patent number: 8873337
    Abstract: The systems and methods described herein relate to systems and methods for synthetic aperture sonar (SAS) or radar including overpinging with multiple SAS transmitters.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 28, 2014
    Assignee: Hadal, Inc.
    Inventor: Richard J. Rikoski
  • Patent number: 8867311
    Abstract: The systems and methods described herein relate to systems and methods for synthetic aperture sonar (SAS) having multiple transmitters and generating orthogonal pinging sequences configured to enhance performance.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 21, 2014
    Assignee: Hadal, Inc.
    Inventor: Richard J. Rikoski
  • Publication number: 20140261138
    Abstract: Systems and methods for a robust underwater vehicle are described herein. A robust underwater vehicle may include a force-limiting coupler connecting an actuation system to an actuation fin. The force-limiting coupler may be configured to break away from the actuation system upon receiving a threshold force. The robust underwater vehicle may also comprise hull sections connected by a threaded turnbuckle. Carbon-fiber axial strength members may mate with the threaded turnbuckle to pull the hull sections together to a specified preload tension. The robust underwater vehicle may also include a blazed sonar array protected by a carbon fiber bow including a plurality of slits. The plurality of slits may provide significant protection to the sonar array while simultaneously allowing one or more transducers to transmit sonar signals in a two-dimensional plane.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: HADAL, INC.
    Inventors: Richard J. Rikoski, Robert S. Damus, Jonathan Pompa, Dylan Owens, Richard Jenkins
  • Publication number: 20140259618
    Abstract: Systems and methods are described herein for manufacturing a pressure vessel component. The pressure vessel component may be made from a metal that is cast to produce a gross pressure vessel component. Casting the metal may comprise sintering the metal followed by a hot isostatic press (HIP) process. In other embodiments, casting the metal may comprise pouring molten metal into a mold. Portions of the gross pressure vessel component may have an increased thickness located at predetermined positions on the gross pressure vessel component. These portions may include bosses or other designed features intended for the finalized pressure vessel component. The gross pressure vessel may be indexed to select the portions, and these selected portions may then be machined to produce the final pressure vessel component.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: HADAL, INC.
    Inventors: Robert S. Damus, Dylan Owens, Richard J. Rikoski
  • Publication number: 20140272475
    Abstract: Systems and methods are disclosed herein for a pressure tolerant energy system. The pressure tolerant energy system may comprise a pressure tolerant cavity and an energy system enclosed in the pressure tolerant cavity configured to provide electrical power to the vehicle. The energy system may include one or more battery cells and a pressure tolerant, programmable management circuit. The pressure tolerant cavity may be filled with an electrically-inert liquid, such as mineral oil. In some embodiments, the electrically-inert liquid may be kept at a positive pressure relative to a pressure external to the pressure tolerant cavity. The energy system may further comprise a pressure venting system configured to maintain the pressure inside the pressure tolerant cavity within a range of pressures. The pressure tolerant cavity may be sealed to prevent water ingress.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: HADAL, INC.
    Inventors: James Morash, Jonathan Pompa, Ben Kfir, Robert S. Damus, Richard J. Rikoski
  • Publication number: 20140272230
    Abstract: Systems and methods for adding buoyancy to an object are described herein. A buoyant material may be enclosed inside a flexible container, heated, and inserted into a free flooded cavity inside the object. The flexible container may then be formed to the shape of the cavity. After the flexible container is formed to the shape of the cavity, the flexible container may be cooled. The flexible container may hold a pre-determined amount of the syntactic material that provides a fixed amount of buoyancy. According to another aspect, systems and methods for packing a vehicle are described herein. In some embodiments, a buoyant material may be molded into the shape of a hull of a vehicle, and a plurality of cutouts may be extracted from the buoyant material which are specifically designed to incorporate one or more instruments.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Hadal, Inc.
    Inventors: Richard J. Rikoski, Jonathan Pompa, Robert S. Damus, Dylan Owens
  • Publication number: 20130187787
    Abstract: The systems and methods described herein include releasable storage devices that can surface with data. The devices include data storage, an antenna, battery and means to propel the device to the surface or into the atmosphere. In certain embodiments, it is a USB memory stick, a battery, suitable buoyancy, and an antenna. In certain embodiments, the systems and methods described herein include a rocket to boost the system out of the water to a higher altitude. Once the system is airborne, it can transmit data to a ship or satellite via radio communications, via other line of site methods such as optical, or may be captured by an aircraft such as a UAV.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 25, 2013
    Applicant: HADAL, INC.
    Inventor: Hadal, Inc.