Abstract: A blood donation unit in which a reduced outside diameter phlebotomy needle is employed to minimize donor discomfort. The blood flow if, however, maintained at a flow level similar to that obtained with standard gauge phlebotomy needles by a roller pump which provides a predetermined pressure differential between the ends of the phlebotomy needle. The blood is mixed with a predetermined ratio of anticoagulant immediately after passing through the phlebotomy needle. The ratio of whole blood to anticoagulant is independent of the volume of whole blood collected.
Type:
Grant
Filed:
August 29, 1980
Date of Patent:
May 31, 1983
Assignee:
Haemonetics Corporation
Inventors:
Ronald O. Gilcher, Allen Latham, Jr., Jonathan D. Schiff, Donald W. Schoendorfer
Abstract: An aseptically pure dispensing anticoagulant device adapted to be connected to a blood collection set and which may be aseptically treated by ethylene oxide or other high diffusivity sterilant without deleterious effects upon the anticoagulant. Various embodiments are shown; in one, a collapsible pouch is provided which includes a barrier against diffusion of water vapor and ethylene oxide. In another embodiment, a rigid anticoagulant container is employed which necessitates a secondary volume of air in a surrounding pouch to provide air to displace liquid in the rigid container as it passes into the set.
Abstract: Apparatus is disclosed for centrifugally separating blood into a first blood component, such as a plasma-rich component, and a second blood component, such as a plasma-poor component. This apparatus employs a centrifuge intended to be used immediately adjacent to a blood donor. A flexible displacement pouch having a fluid operated diaphragm is positioned within a blood processing chamber of the centrifuge rotor. The blood processing chamber comprises a pair of contoured support shoes which structurally supports the displacement pouch and a flexible blood processing bag. Separated first blood component is expressed from the flexible blood bag by movement of the diaphragm and collected in a receiver container as the centrifuge rotor spins. A pressure plate is mounted against the support shoes. The plate has a mass sufficient to at least counterbalance the force exerted inwardly by the fluid in the blood processing bag during the separation process.
Abstract: Apparatus is disclosed for centrifugally separating blood into a first blood component, such as a plasma-rich component, and a second blood component, such as a plasma-poor component. This apparatus employs a self-balancing centrifuge intended to be used immediately adjacent to a blood donor. The blood pathway is completely disposable and includes a phlebotomy needle and blood compatible tubing connecting the phlebotomy needle to a flexible blood processing bag designed to be supported within a contoured processing chamber in the centrifuge rotor so that second blood component travels along a short internal bag dimension to achieve separation. A displacement chamber having a fluid operated diaphram is also positioned within the blood processing chamber of the centrifuge rotor. Separated first blood component can be expressed from the flexible blood bag by movement of the diaphram and collected in a receiver container as the centrifuge rotor spins.
Abstract: An improved rotary centrifuge seal is disclosed of the type formed from a rotatable ring member (40) and a non-rotatable ring member (42) having a sealing face of each in contact to provide a dynamic seal between rotatable and stationary centrifuge elements. This improved seal is provided with means for entrapping solid particulate matter generated at areas of contact (44) and means for directing entrapped particles back to the area of contact where they are ingested. This prevents contamination of fluid being processed in the centrifuge with such solid particles, which is particularly important in blood-processing centrifuges.
Abstract: Apparatus is disclosed for centrifugally separating blood into a first blood component, such as a plasma-rich component, and a second blood component, such as a plasma-poor component. This apparatus employs a self-balancing centrifuge intended to be used immediately adjacent to a blood donor. The blood pathway is completely disposable and includes a phlebotomy needle and blood compatible tubing connecting the phlebotomy needle to a flexible blood processing bag designed to be supported within a contoured processing chamber in the centrifuge rotor so that second blood component travels along a short internal bag dimension to achieve separation. A displacement chamber having a fluid operated diaphram is also positioned within the blood processing chamber of the centrifuge rotor. Separated first blood component can be expressed from the flexible blood bag by movement of the diaphram and collected in a receiver container as the centrifuge rotor spins.
Abstract: A pheresis process and apparatus for carrying it out. Blood from a donor is transferred to a pheresis bowl formed to have a red cell reservoir and a plasma reservoir in fluid communication through plasma ducts. The pheresis bowl is adapted for centrifuging to separate the red cells and plasma. This separation is accomplished simultaneously with the withdrawal of blood from the donor. At the end of the withdrawal the red cells are returned to the donor. The connection with the donor is thus continuously maintained during the entire procedure. The process is safe, fast and economical.
Abstract: Plasmapheresis apparatus is disclosed which comprises a unique combination of blood withdrawal, separation and return means, together with automatic cycle control means. This apparatus can withdraw whole blood from a donor, separate it into plasma and non-plasma components, and return the non-plasma component to the donor while the donor remains connected to the apparatus throughout the entire procedure. Standard quantities of separated plasma can be obtained in significantly reduced times, and the possibility of mistakenly returning wrong blood components to the donor is eliminated.
Abstract: A pheresis process and apparatus for carrying it out. Blood from a donor is transferred to a pheresis bowl formed to have a red cell reservoir and a plasma reservoir in fluid communication through plasma ducts. The pheresis bowl is adapted for centrifuging to separate the red cells and plasma. This separation is accomplished simultaneously with the withdrawal of blood from the donor. At the end of the withdrawal the red cells are returned to the donor. The connection with the donor is thus continuously maintained during the entire procedure. The process is safe, fast and economical.