Abstract: A portable smart device, comprising a sensor coupled to the device, the sensor configured to sense a physiological parameter of a user, and a processor configured to perform a breath training session to determine breathing loop gain in an awake state by instructing the user to breathe in a specified manner, receive physiological data from the sensor, the physiological data representing the sensed physiological parameter of the user, and determine a value of the loop gain based on the physiological data from the sensor.
Abstract: Systems and methods for determining the effectiveness of breath training regimens are disclosed. The systems include a sensor assembly configured to detect data indicative of at least one physiological parameter of a user during breath training sessions while the user is awake and while the user is asleep. The system also includes an electronic computing unit with a processor configured to analyze the data indicative of the at least one physiological parameter of the user detected by the sensor assembly, and determine effectiveness of the breath training sessions on the user by determining trends of the at least one physiological parameter of the user from the analyzed data, and determining changes in the at least one physiological parameter of the user while the user is asleep occurring during a period of time from the determined trends.
Abstract: Systems, methods and apparatus for breath training are disclosed. The systems and apparatus may comprise an output device, at least one sensor configured to detect physiological data from a trainee, and a data processor coupled to the output device and the at least one sensor, the data processor configured to provide instructions to a trainee through the output device based on a breath training regimen and to receive and analyze the physiological data detected from the at least one sensor. The methods may comprise the steps of instructing a trainee based on a breath training regimen, detecting physiological data from the trainee through at least one sensor, analyzing physiological data and providing feedback to the trainee based on the analyzed physiological data.
Abstract: Systems, methods and apparatus for breath training are disclosed. The systems and apparatus may comprise an output device, at least one sensor configured to detect physiological data from a trainee, and a data processor coupled to the output device and the at least one sensor, the data processor configured to provide instructions to a trainee through the output device based on a breath training regimen and to receive and analyze the physiological data detected from the at least one sensor. The methods may comprise the steps of instructing a trainee based on a breath training regimen, detecting physiological data from the trainee through at least one sensor, analyzing physiological data and providing feedback to the trainee based on the analyzed physiological data.