Abstract: A method for in-situ determination of a wellbore formation pressure through a layer of cement, the method includes detecting an output pressure signal from a pressure sensor disposed in a housing in the cement outside a wellbore casing; detecting a first temperature signal from a first temperature sensor disposed in the housing; and calculating a temperature compensated output pressure signal based on the output pressure signal and the first temperature signal.
Abstract: Wireless downhole sensor technology is being deployed in oil and gas wells. System components are inductively coupled, which enables remote placement of apparatus on the outside of wellbore conduit without the need for any wired connection. These systems make use of a pair of conductive elements that need to be aligned in the well. Embodiments of the present invention provide techniques to correctly space out the wellbore completion string so that the down-hole conductive elements will be properly aligned and within proximity to establish wireless connectivity, as the wellbore completion string is set and the tubing hanger is landed inside the wellhead housing of the well.
Type:
Grant
Filed:
March 15, 2013
Date of Patent:
March 12, 2019
Assignee:
HALLIBURTON AS
Inventors:
Øivind Godager, Fan-nian Kong, Bruce H. Storm, Jr.
Abstract: A Wellbore stress meter system and method for determining wellbore formation instability, comprising a first load cell, a first pressure sensor with a pressure output signal, a wireless communication system, a cable, and a surface device, said first load cell comprises; a second pressure sensor with a stress output signal, a cell element comprising a fluid, a first interface element in a first end of said first load cell with fluidly separated first and second surfaces wherein said first surface is in fluid communication with said fluid, and said first interface element moves relative said cell element as a function of a force applied on said first surface, and compresses said fluid acting on said second pressure sensor.
Abstract: A wellbore E-field wireless communication system, the communication system comprising a first E-field antenna, and a second E-field antenna, wherein the first antenna, and the second antenna are both arranged in a common compartment, such as an annulus of a wellbore and further arranged for transferring a signal between a first connector of the first E-field antenna and a second connector of the second E-field antenna by radio waves.