Abstract: A method of servicing subsea equipment comprising positioning a reaction chamber about the subsea equipment having a plug therein, wherein positioning the reaction chamber substantially isolates an area about the subsea equipment from an environment external to the reaction chamber, providing one or more reactants to the reaction chamber, and allowing a reaction to proceed between the reactants, wherein the reaction produces sufficient heat to eliminate the plug. A system for removing plugs from subsea equipment comprising a support vessel, a reaction chamber supported by the support vessel and positioned adjacent the subsea equipment having a plug therein, wherein the reaction chamber is configured to substantially isolate an area about the subsea equipment having a plug therein from an environment external to the reaction chamber, and one or more exothermically-reacting chemical reactants present within the reaction chamber.
Abstract: Downhole positioning systems and associated methods are disclosed. In some embodiments, the system comprises a downhole source, an array of receivers, and a data hub. The downhole source transmits an electromagnetic positioning signal that is received by the array of receivers. The data hub collects amplitude and/or phase measurements of the electromagnetic positioning signal from receivers in the array and combines these measurements to determine the position of the downhole source. The position may be tracked over time to determine the source's path. The position calculation may take various forms, including determination of a source-to-receiver distance for multiple receivers in the array, coupled with geometric analysis of the distances to determine source position. The electromagnetic positioning signal may be in the sub-hertz frequency range.
Abstract: Apparatus, methods for forming the apparatus, and methods for operating the apparatus provide a value for a formation property or a borehole property from measurements obtained in a well. The value may be generated from determining a weighted average of the value for the formation property or the borehole property using both values corresponding to different azimuths and weights corresponding to different azimuths.
Abstract: Drilling fluids are provided that comprise an organophilic clay treated with a quaternary ammonium surfactant having an amide linkage. The quaternary ammonium surfactant may comprise a compound generally represented by the following formula: where M? is an anion such as a chloride, methyl sulfate, bromide, acetate, or iodide ion; R1 is an alkyl group such as a saturated hydrocarbon with 10 or more carbons; R2, R3, and R4 are the same or different alkyl groups such as a methyl, ethyl, or benzyl group, and x is greater than or equal to 1. The organophilic clay treated in this manner is substantially biodegradable. In embodiments, the drilling fluids comprise the foregoing organophilic clay, an oil-based fluid and a weighting agent. In still more embodiments, the drilling fluids comprise the foregoing organophilic clay, an invert emulsion, an emulsifier, and a weighting agent.
Abstract: Tracking fluid displacement along a wellbore using real time temperature measurements. A method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature in real time in the wellbore; and observing in real time a variation in temperature gradient between fluid compositions in the wellbore. Another method of tracking fluid displacement along a wellbore includes the steps of: monitoring temperature along the wellbore; and observing a variation in temperature gradient due to a chemical reaction in the wellbore. Another method includes the step of causing a variation in temperature gradient in the fluid while the fluid flows in the wellbore.
Type:
Grant
Filed:
July 3, 2008
Date of Patent:
June 8, 2010
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Gerard Glasbergen, Diederik van Batenburg, Mary Van Domeien, David O. Johnson, Jose Sierra, David Ewert, James Haney
Abstract: A hydraulic control and actuation system for downhole tools. In a described embodiment, a hydraulic control and actuation system includes an internal chamber serving as a low pressure region and a well annulus serving as an energy source. A valve assembly provides selective fluid communication between alternating opposite sides of a piston and each of the energy source and low pressure region. Displacement of the piston operates a well tool. Operation of the valve assembly is controlled via telemetry between a remote location and an electronic circuit of the system.
Type:
Grant
Filed:
October 18, 2006
Date of Patent:
June 8, 2010
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Roger L. Schultz, Melissa G. Allin, Paul D. Ringgenberg, Vincent P. Zeller, Tyler T. Trinh, Adam D. Wright, Donald G. Kyle
Abstract: Installation of lines in well tools. A well tool for use in conjunction with a subterranean well includes connectors at opposite ends of the well tool, a line extending between the connectors; at least one threaded connection at a position between the connectors; and an anti-rotation device which permits make-up of the threaded connection without relative rotation between ends of the line. A method of installing a line in a well tool includes the steps of: making-up a threaded connection at a position between end connectors of the well tool; and preventing relative rotation between ends of the line during the threaded connection making-up step, the line extending between the connectors.
Abstract: An NMR logging tool for conducting NMR measurements in a plurality of sensitive volumes ranging up to a meter from the tool. The tool comprises a magnetic assembly using one or more permanent magnets and at least one pole piece for extending a magnet pole and shaping the magnetic field to simulate a magnetic monopole in a sensitive volume within the formation. Different embodiments of a segmented antenna enable directional NMR logging. The tool embodiments and methods of their use are suitable for wireline or LWD logging, and can be used for directional drilling.
Type:
Grant
Filed:
October 30, 2008
Date of Patent:
June 8, 2010
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Manfred G. Prammer, Sergey Knizhnik, Stefan K. Menger, George D. Goodman, Edward J. Harris, III, Earle Drack
Abstract: Methods and systems that utilize explosive and cryogenic means to establish fluid communication to areas away from the well bore walls are disclosed. A first fracture is induced in the subterranean formation. The first fracture is initiated at about a fracturing location and the initiation of the first fracture is characterized by a first orientation line. The first fracture temporarily alters a stress field in the subterranean formation. Explosives are then used to induce a second fracture in the subterranean formation. The second fracture is initiated at about the fracturing location and the initiation of the second fracture is characterized by a second orientation line. The first orientation line and the second orientation line have an angular disposition to each other.
Abstract: Methods of using water-soluble hydrophobically modified polymers to treat intervals of a subterranean formation having variable permeabilities. An exemplary embodiment provides a method of treating an interval of a subterranean formation having a permeability that varies. The method comprises contacting the interval with a water-soluble hydrophobically modified polymer capable of selectively reducing the effective permeability of the interval to water without a comparable reduction of the effective permeability of the interval to hydrocarbons. The hydrophobically modified polymer modifies the interval to have a more uniform permeability without substantially preventing the flow of fluids through the interval. The method further comprises introducing a treatment fluid into the interval. The more uniform permeability of the interval allows for a more uniform treatment of the interval by the treatment fluid than would be allowed without treatment of the interval with the hydrophobically modified polymer.
Abstract: An embodiment includes a method that includes performing a directional drilling operation. The method also includes receiving data from one or more sensors, wherein at least one of the one or more sensors output data related to a performance attribute of a downhole component that is from a group consisting of a downhole drilling motor and a rotary steerable tool. The downhole component comprises part of a drill string that is used to perform the directional drilling operation. The performance attribute is selected from a group consisting of rotations per unit of time of the downhole component, operating differential pressure across the downhole component and torque output of the downhole component. The method also includes displaying the data in a graphical and numerical representation on a graphical user interface screen.
Abstract: In some embodiments, an apparatus includes a tool for a downhole operation. The tool includes a downhole power source to generate power. The tool also includes a cooler module to lower temperature based on the power.
Type:
Application
Filed:
January 26, 2010
Publication date:
June 3, 2010
Applicant:
Halliburton Energy Services, Inc.
Inventors:
Bruce H. Storm, Roger L. Schultz, Michael L. Fripp
Abstract: A system for verifying perforating gun status prior to perforating a wellbore. The system includes a perforating gun (38) having a leak sensor disposed therein that is positionable at a target location within the wellbore on a tubing string (30). A communication system (42, 44, 46, 48, 50) is integrated with the tubing string (30). The communication system (42, 44, 46, 48, 50) is operable to communicate with the leak sensor. A surface controller (40) is operable to send a first telemetry signal via the communication system (42, 44, 46, 48, 50) to interrogate the leak sensor regarding a leak status of the perforating gun (38), receive a second telemetry signal from the leak sensor via the communication system (42, 44, 46, 48, 50) including the leak status of the perforating gun (38) and determine whether to operate the perforating gun (38) based upon the leak status information.
Type:
Application
Filed:
December 3, 2008
Publication date:
June 3, 2010
Applicant:
HALLIBURTON ENERGY SERVICES, INC.
Inventors:
John D. Burleson, John H. Hales, Kevin D. Fink
Abstract: A wellbore servicing apparatus, comprising a first mandrel movable longitudinally along a central axis and rotatable about the central axis, an orienting member configured to selectively interfere with movement of the first mandrel along the central axis, and a second mandrel connected to the first mandrel and configured to rotate about the central axis when the first mandrel rotates about the central axis. A method of orienting a wellbore servicing tool, comprising connecting an orienting tool to the wellbore servicing tool, identifying a predetermined direction, increasing a pressure within the orienting tool, rotating a portion of the orienting tool in response to the increase in pressure within the orienting tool, and rotating the wellbore servicing tool in response to the rotating of the portion of the orienting tool.
Type:
Application
Filed:
December 3, 2008
Publication date:
June 3, 2010
Applicant:
HALLIBURTON ENERGY SERVICES, INC.
Inventors:
Robert Howard, Robert Pipkin, Iosif Hriscu
Abstract: A casing exit joint with an easily milled and low density barrier. A casing exit joint for use in drilling a lateral wellbore outwardly from a parent wellbore includes a generally tubular window structure having a window formed through a sidewall of the structure. An outer sleeve is disposed external to the window structure, so that the sleeve overlies the window. A hardenable substance supports the sleeve against deflection toward the window. A method of drilling a lateral wellbore extending outwardly from a parent wellbore includes the steps of: providing a casing exit joint including a hardenable substance positioned in a sidewall of the casing exit joint; then installing the casing exit joint in the parent wellbore; and then cutting through the hardenable substance in order to provide access for drilling the lateral wellbore.
Type:
Grant
Filed:
May 21, 2008
Date of Patent:
June 1, 2010
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Joseph D. Parlin, William W. Dancer, Jody R. McGlothen
Abstract: Acidic treatment fluids used in industrial and/or subterranean operations, and more particularly, acidic treatment fluids comprising clarified xanthan gelling agents, and methods of use in industrial and/or subterranean operations, are provided. In one embodiment, the acidic treatment fluids comprise an aqueous base fluid, an acid, and a gelling agent comprising clarified xanthan.
Abstract: Among many things, in some embodiments, dual-function additives that enhance fluid loss control and the stability of viscoelastic surfactant fluids, and their associated methods of use in subterranean formations, are provided. In one embodiment, the methods comprise: providing a viscoelastic surfactant fluid that comprises an aqueous base fluid, a viscoelastic surfactant, and a dual-function additive that comprises a soap component; and introducing the viscoelastic surfactant fluid into at least a portion of a subterranean formation.
Type:
Grant
Filed:
December 29, 2006
Date of Patent:
June 1, 2010
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Thomas D. Welton, David E. McMechan, Jason E. Bryant
Abstract: Acidic treatment fluids used in industrial and/or subterranean operations, and more particularly, acidic treatment fluids comprising clarified xanthan gelling agents, and methods of use in industrial and/or subterranean operations, are provided. In one embodiment, the methods comprise: providing an acidic treatment fluid that comprises an aqueous base fluid, an acid, and a gelling agent that comprises clarified xanthan; and introducing the acidic treatment fluid into a portion of a subterranean formation.
Abstract: A method and apparatus for ratcheting a stimulation tool in a well in which the stimulation tool is movable from a first radial position to a second radial position without moving the tool string.
Abstract: In one embodiment, the present invention provides a silicone-tackifier matrix composition that comprises at least one silicone polymer component, at least one tackifying agent, and at least one curing agent and/or at least one cross linking agent.
Type:
Grant
Filed:
June 6, 2006
Date of Patent:
June 1, 2010
Assignee:
Halliburton Energy Services, Inc.
Inventors:
B. Raghava Reddy, Michael J. R. Segura, Philip D. Nguyen