Abstract: A system for use in a wellbore can include a first transceiver that is operable to transmit a wireless signal. The first transceiver can be positioned in an electrically isolated chamber between a tubular and a casing string for confining a transmission of the wireless signal to within the electrically isolated chamber. The system can also include a second transceiver that is positionable in the electrically isolated chamber for receiving the wireless signal from the first transceiver.
Type:
Grant
Filed:
March 17, 2015
Date of Patent:
August 21, 2018
Assignee:
Halliburton Engergy Services, Inc.
Inventors:
Tu Dinh Nguyen, Kenneth L. Schwendemann
Abstract: Methods including providing at least one target interval in a wellbore, wherein the at least one target interval has a temperature of at least about 70° F. to at least about 290° F.; providing a pad fluid; providing a treatment fluid comprising proppant particulates coated with a one-step furan resin composition, wherein the one-step furan resin composition comprises a furan polymer, a hydrolyzable ester, a silane coupling agent, a surfactant, and a solvent; introducing the pad fluid into the wellbore at a rate and pressure sufficient to create or enhance at least one fracture within the target interval; introducing the treatment fluid into the wellbore so as to deposit the proppant particulates coated with the one-step furan resin composition into the at least one fracture; and setting the one-step furan resin composition so as to form at least a partially consolidated permeable proppant pack in the at least one fracture.
Abstract: The present invention relates to acid-soluble cement compositions that comprise cement kiln dust (“CKD”) and/or a natural pozzolan and associated methods of use. An embodiment includes a method of cementing comprising: placing an acid-soluble cement composition in a subterranean formation, wherein the acid-soluble cement composition comprises a hydraulic cement, a component selected from the group consisting of CKD, pumicite, and a combination thereof, and water; allowing the acid-soluble cement composition to set; and contacting the set acid-soluble cement composition with an acid to dissolve the set acid-soluble cement composition.
Type:
Application
Filed:
September 19, 2012
Publication date:
March 20, 2014
Applicant:
Halliburton Engergy Services, Inc.
Inventors:
D. Chad Brenneis, Craig W. Roddy, James R. Benkley, Preston DePlacido, William J. Caveny, Rickey L. Morgan, Ronnie G. Morgan
Abstract: A wellbore servicing comprising a calcium aluminate cement and at least one gelation inhibitor wherein the calcium aluminate cement comprises less than about 50 wt. % alumina, greater than about 2 wt. % iron oxide, or both. A wellbore servicing composition comprising calcium aluminate cement and a gelation inhibitor, wherein the gelation inhibitor comprises a copolymer comprising one or more sulfonated aromatic monomers and one or more acrylate monomers. A wellbore servicing composition comprising calcium aluminate cement and a gelation inhibitor, wherein the gelation inhibitor comprises a copolymer comprising alkylbenzene sulfonic acid, at least one methallyl sulfonic acid monomer; at least one copolymerizable nonionic monomer, and at least one copolymerizable olefinically unsaturated carboxylic acid monomer.
Abstract: A dynamic fluid loss cell apparatus and method for measuring filter-cake build-up on a simulated core of the well-bore and for measuring the effectiveness of a spacer fluid to remove filter-cake. There is also provided, a dynamic fluid loss cell apparatus and method for measuring the dynamic fluid loss during the simulated build-up and removal of the filter-cake. The apparatus and method further provides for performing the measurements under various conditions including temperature and differential pressure.