Abstract: A portable testing device for comparing one reflective part with another to determine whether the reflective part has met quality standards is presented. The portable reflex comparator includes a light source for directing a beam of light to a lock-in amplifier and to a collimating lens. The collimating lens directs light to a reflex part to be tested, for example, one being manufactured by an injection molding machine to be used as an automotive lens. A light beam is reflected back out of the reflective part, through the collimating lens where it converges to the focal plane where it is processed by the amplifier. A voltmeter produces a reading for the operator to see whether the production part meets a certain standardized value.
Abstract: A retro-reflective sign is formed of a lens plate bearing indicia and having a front face and a rear face. The rear face is formed with a plurality of adjacent cube corner configurations having central axes, which configurations may reflect light rays approximately parallel to incoming light rays. The front face can be formed with adjacent rows of prisms that are saw-tooth shaped in cross-section. The prisms overlap the configurations and are shaped to bend incoming light rays towards the axes of their respective overlapped configurations and to re-bend the reflected light rays parallel to the incoming light rays. The lens plate is bowed so that its front face is convex and its rear face is concave. A rearwardly bowed support plate covers the rear face of the lens plate and the two plates are secured together along their peripheral edges for rigidifying the sign. The rear plate may be sufficiently light transparent to pass some light therethrough to backlight the indicia on the front plate.
Abstract: A multiple axes electroform is created by first locating a plurality of reflex or optical pins and a mold matrix that extends generally parallel to a first axis. A second mold matrix is created by loading into a fixture yet another set of pins that are generally parallel to a second axis. Electroforms are then made from each mold matrix. The resulting electroforms are then placed into yet another fixture whereby a third electroform is made. The third electroform is then placed into a final fixture where a master electroform is made which will be used in the tooling that is used to injection mold the final automotive lens assembly.
Abstract: An interchangeable headlamp reflector and light bulb unit is provided which can be used as part of various automotive headlamp assemblies. The surface of the reflector is defined mathematically by considering the optical path differences between a ray of light from a light source and a ray of light from a vertical cylindrical axis. The reflector is made of a low number of individual segments that each define a certain portion of the resulting beam of light. Each segment has light rays that extend parallel to the ground and diverge horizontally, thus minimizing possible hot spots on the lens of the reflector assembly.