Patents Assigned to Hanwha Chemical Corporation
  • Patent number: 8309276
    Abstract: The present invention discloses a process for preparing catalyst solution for a membrane-electrode assembly in a fuel cell, which comprises the steps of a) mixing a catalyst solution (Solution A) wherein catalyst particles are dispersed in water and an ion conductive resin solution (Solution B) wherein an ion conductive resin is dissolved in water, low boiling point organic solvent or a mixture thereof, to form a dispersion; b) mixing the dispersion obtained from step a) with functional additive dissolved in high boiling point solvent or a mixture of low boiling point solvent arid water (Solution C) to prepare catalyst ink dispersion; and c) aging the catalyst ink dispersion obtained from step b).
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: November 13, 2012
    Assignee: Hanwha Chemical Corporation
    Inventors: Byungchul Jang, Young Taek Kim, Jung-Eun Yang, Youngsu Jiong, Dong Hwan Ryu, Min-Ho Seo
  • Publication number: 20120276091
    Abstract: The present invention relates to a human recombinant monoclonal antibody that specifically binds to human Vascular Cell Adhesion Molecule-1 (VCAM-1) to inhibit adhesion between leukocytes and activated endothelial cells and transmigration of leukocytes through the activated endothelial cells, and a prophylactic and therapeutic composition for inflammatory disease or cancer comprising the same. The human recombinant monoclonal antibody according to the present invention shows a strong affinity to VCAM-1 expressed on human endothelial cell, and effectively inhibits VCAM-1-mediated adhesion between leukocytes and activated endothelial cells and transmigration of leukocytes through the activated endothelial cells, thereby being used for the prevention and treatment of inflammatory disease such as asthma and arthritis, transplant rejection, cardiovascular disease, and cancer.
    Type: Application
    Filed: October 22, 2010
    Publication date: November 1, 2012
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Jung Tae Lee, Kyung Duk Moon, Ji Yong Yoon, Byung Je Sung, Dong Heon Lee, Dong Eun Lee, Su Yeon Ryu, Hyun Bo Shim, Kyung Jae Kang
  • Patent number: 8299292
    Abstract: Provided is a method for preparing 60% or more cis-di(C4-C20)alkyl cyclohexane-1,4-dicarboxylate which exhibits superior plasticizing property for PVC resin. Instead of a phthalate- or terephthalate-based aromatic ester derivative, 60% or more cis-dimethyl cyclohexane-1,4-dicarboxylate is used as a starting material. The 60% or more cis-dimethyl cyclohexane-1,4-dicarboxylate is subjected to transesterification with (C4-C20) primary alcohol to prepare 60% or more cis-di(C4-C20)alkyl cyclohexane-1,4-dicarboxylate. Methanol produced as a byproduct during the transesterification is removed and some of the primary alcohol, which is evaporated, is recycled. Thus prepared 60% or more cis-di(C4-C20)alkyl cyclohexane-1,4-dicarboxylate exhibits superior plasticizer characteristics, including good plasticizing efficiency for PVC resin, high absorption rate, good product transparency after gelling, less bleeding toward the surface upon long-term use, and the like.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: October 30, 2012
    Assignee: Hanwha Chemical Corporation
    Inventors: Kyong-jun Yoon, Young-kyun Choi
  • Publication number: 20120244334
    Abstract: The present invention provides a complex comprising an aggregate of primary particles of an electrode-active transition metal compound and a fibrous carbon material, wherein said fibrous carbon material is present more densely in the surface region of the aggregate than in the inside of the aggregate.
    Type: Application
    Filed: December 19, 2011
    Publication date: September 27, 2012
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Sei Ung Park, Dong Suek Lee, Ju Suk Ryu, Seong Jae Lim, Si Jin Oh
  • Publication number: 20120219703
    Abstract: The present invention relates to a method for manufacturing a conductive metal thin film, including: preparing a conductive metal coating solution by adding carboxylic acid to a dispersion including a conductive metal particle having a core/shell structure; coating the conductive metal coating solution on a top portion of a substrate, heat-treating it, and removing an metal oxide layer of the surface of the conductive metal particle having the core/shell structure; and forming a thin film of the conductive metal particle from which the metal oxide layer is removed.
    Type: Application
    Filed: October 26, 2010
    Publication date: August 30, 2012
    Applicants: Industry-Academic Cooperation Foundation, Yonsei University, HANWHA CHEMICAL CORPORATION
    Inventors: Won Il Son, Sun Jin Park, Eui Duk Kim, Seok Heon Oh, Joo Ho Moon, Kyoo Hee Woo, Dong Jo Kim
  • Publication number: 20120168692
    Abstract: Provided is a method for preparing an aqueous dispersion of metal nanoparticles having superior dispersibility and being sinterable at low temperature by modifying the surface of metal nanoparticles having hydrophobic groups with hydrophilic groups. Specifically, by treating the surface hydrophobic groups of the metal nanoparticles with a surface modification solution containing a surfactant and a wetting-dispersing agent, the treatment throughput can be improved about 10-fold and the particles can be monodispersed without agglomeration. Further, by using an antioxidant and a ligand removal agent in the solution, denaturation and oxidation of the particles can be prevented and the high-boiling-point hydrophobic ligands can be eliminated effectively. The hydrophilically treated metal nanoparticles may be dispersed in an aqueous-based solvent to prepare a metal ink sinterable at low temperature.
    Type: Application
    Filed: September 14, 2010
    Publication date: July 5, 2012
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Won Son, II, Eui Duk Kim, Seok Heon Oh
  • Patent number: 8206852
    Abstract: The present invention relates to a lithium-containing metal composite oxide comprising paramagnetic and diamagnetic metals, which satisfies any one of the following conditions: (a) the ratio of intensity between a main peak of 0±10 ppm (I0ppm) and a main peak of 240±140 ppm (I240ppm), (I0ppm/I240ppm), is less than 0.117·Z wherein z is the ratio of moles of the diamagnetic metal to moles of lithium; (b) the ratio of line width between the main peak of 0±10 ppm (I0ppm) and the main peak of 240±140 ppm (I240ppm), (W240ppm/W0ppm), is less than 21.45; and (c) both the conditions (a) and (b). The peaks of the lithium-containing metal composite oxide are obtained according to the 7Li—NMR measurement conditions and means disclosed herein.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: June 26, 2012
    Assignees: LG Chem, Ltd., Hanwha Chemical Corporation
    Inventors: Sung-Kyun Chang, Eui-Yong Bang, Min-Chul Jang, Sang-Hoon Choy, Ki-Young Lee, Saebomi Park, Wan-Jae Myeong, Kyu-Ho Song, Joo-Hyeong Lee, Young-Sik Hahn, Myung-Ho Cho
  • Patent number: 8187566
    Abstract: The present invention relates to a continuous method for functionalizing a carbon nanotube, and more specifically, to a continuous method for functionalizing a carbon nanotube by feeding functional compounds having one or more functional group into a functionalizing reactor into which a carbon nanotube mixture including oxidizer is fed under a pressure of 50 to 400 atm and a temperature of 100 to 600° C. to a subcritical water or supercritical water condition of a pressure of 50 to 40 atm by using a continuously functionalizing apparatus to obtain the functionalized products, such that the functional group of the functional compound can be easily introduced to the carbon nanotube, thereby increasing the functionalized effect of the carbon nanotube and increasing the dispersibility accordingly.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: May 29, 2012
    Assignee: Hanwha Chemical Corporation
    Inventors: Jin Seo Lee, Joo Hee Han, Seung-Hoe Do, Seong Cheol Hong
  • Publication number: 20120112134
    Abstract: Provided area carbon nanotube composite material obtained by treating a mixture including carbon nanotubes, at least one carbon compound other than carbon nanotubes and a dispersion medium under a sub-critical or super-critical condition of 50-400 atm, and a method for producing the same. More particularly, the method for producing a carbon nanotube composite material, includes: introducing a mixture including carbon nanotubes, at least one carbon compound other than carbon nanotubes and a dispersion medium into a preheating unit under a pressure of 1-400 atm to preheat the mixture; treating the preheated mixture under a sub-critical or super-critical condition of 50-400 atm; cooling and depressurizing the resultant product to 0-1000 C and 1-10 atm; and recovering the cooled and depressurized product. Provided also is an apparatus for producing a carbon nanotube composite material in a continuous manner.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 10, 2012
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Man Woo Jung, Seong Yun Jeon, Seong Cheol Hong, Joo Hee Han, Joo Seok Oh, Jin Seo Lee, Seung Hoe Do
  • Patent number: 8168348
    Abstract: The present invention relates to a process for the preparation of electrochemical catalysts of the polymer electrolytes-based fuel cells. With the process of the present invention, high catalyst activity while uniformly supporting a large amount of metal particles on a surface of a support can be achieved. Also, the present invention provides a process for the preparation of electrochemical catalysts of the polymer electrolytes-based fuel cells capable of using a small amount of toxic solvent without an additional high-temperature hydrogen annealing.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: May 1, 2012
    Assignee: Hanwha Chemical Corporation
    Inventors: Byungchul Jang, Youngsu Jiong, Youngtaek Kim
  • Publication number: 20120093710
    Abstract: Provided is a continuous method and apparatus of purifying carbon nanotubes. The continuous method and apparatus of purifying carbon nanotubes is characterized in a first purifying step for injecting a carbon nanotube liquid mixture containing an oxidizer into a purifying reactor under a sub-critical water or supercritical water condition at a pressure of 50 to 400 atm and a temperature of 100 to 600° C. to obtain a purified product, thereby removing amorphous carbon and producing the carbon nanotube product.
    Type: Application
    Filed: December 12, 2011
    Publication date: April 19, 2012
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Joo Hee Han, Jin Seo Lee, Seung-Hoe Do, Seong Cheol Hong
  • Patent number: 8148904
    Abstract: The present invention relates to a field emission apparatus and a method of driving the field emission apparatus, which has a three-pole structure of dual emitters formed on both first and second electrodes of a rear substrate in order to obviate a distinction between a gate and a cathode, thus enabling dual field emission. In such a field emission apparatus, a ground is formed between an anode and a point of the first and second electrodes of the rear substrate, and a square wave is applied thereto in order to alternately generate field emission in the first and second electrodes, thus increasing a light-emitting area and emission efficiency, decreasing a driving voltage and consumption power, saving the manufacturing cost and manufacturing time, and accomplishing a longer lifespan.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: April 3, 2012
    Assignee: Hanwha Chemical Corporation
    Inventors: Dong Wook Yang, Yang Woon Na
  • Publication number: 20120021288
    Abstract: The invention provides an anion-deficient lithium transition-metal phosphate as an electrode-active material, which is represented by the chemical formula Li1?xM(PO4)1?y (0?x?0.15, 0?y?0.05). The invention provides a method for preparing said Li1?xM(PO4)1?y, which comprises preparing a precursor of lithium transition-metal phosphate; mixing said precursor with water under reaction conditions of 200˜700 and 180˜550 bar to produce an anion-deficient lithium transition-metal phosphate; and calcining, or granulating and calcining the resultant compound. The invention also provides electrochemical devices employing said Li1?xM(PO4)1?y as an electrode-active material.
    Type: Application
    Filed: January 21, 2010
    Publication date: January 26, 2012
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Kyu Ho Song, Soo Yong Han, Ho Seong Nam, Eui Yong Bang, Se Jin Oh, In Jae Baek, So Yeon Kim, Kyoo Seung Han
  • Patent number: 8092775
    Abstract: Provided is a continuous method and apparatus for purifying carbon nanotubes. Carbon nanotube is fed together with solvent into a preheater via a heat exchanger to produce a carbon nanotube mixture. The carbon nanotube mixture is preheated at 100 to 370° C. Then, the carbon nanotube mixture is purified in a purifying reactor under a subcritical water condition of 50 to 400 atm. The resulting purified product is cooled down to 0 to 100° C. and depressurized into 1 to 10 atm by feeding the purified product into a cooling down and depressurizing part via the heat exchanger. Finally, the cooled and depressurized product is recovered.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: January 10, 2012
    Assignee: Hanwha Chemical Corporation
    Inventors: Joo Hee Han, Jin Seo Lee, Seung-Hoe Do, Seong Cheol Hong
  • Publication number: 20110318583
    Abstract: Provided is barium titanate based powder represented by Chemical Formula 1: (BaxR1r1R2r2)(TiyR3r3R4r4)O3??[Chemical Formula 1] wherein R1 is at least one element selected from the group consisting of yttrium (Y) and lanthanoids; R2 is at least one element selected from the group consisting of magnesium (Mg), calcium (Ca) and strontium (Sr); R3 includes phosphorus (P) and niobium (Nb); R4 is at least one element selected from the group consisting of aluminum (Al), vanadium (V), chrome (Cr), manganese (Mn), cobalt (Co), zirconium (Zr) and tantalum (Ta); r1 and r3 independently represent a real number greater than 0 and equal to or less than 0.05; r2 and r4 independently represent a real number greater than 0 and equal to or less than 0.1; and (x+r1+r2)/(y+r3+r4) is a real number ranging from 0.85 to 1.15.
    Type: Application
    Filed: March 12, 2010
    Publication date: December 29, 2011
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Sei Ung Park, Ju Suk Ryu, Seong Jae Lim, In Jae Baek
  • Publication number: 20110263770
    Abstract: Provided is a method for preparing 60% or more cis-di(C4-C20)alkyl cyclohexane-1,4-dicarboxy-late which exhibits superior plasticizing property for PVC resin. Instead of a phthalate- or terephthalate-based aromatic ester derivative, 60% or more cis-dimethyl cyclo-hexane-1,4-dicarboxylate is used as a starting material. The 60% or more cis-dimethyl cyclohexane-1,4-dicarboxylate is subjected to transesterification with (C4-C20) primary alcohol to prepare 60% or more cis-di(C4-C20)alkyl cyclohexane-1,4-dicarboxylate. Methanol produced as a byproduct during the transesterification is removed and some of the primary alcohol, which is evaporated, is recycled. Thus prepared 60% or more cis-di(C4-C20)alkyl cyclohexane-1,4-dicarboxylate exhibits superior plasticizer characteristics, including good plasticizing efficiency for PVC resin, high absorption rate, good product transparency after gelling, less bleeding toward the surface upon long-term use, and the like.
    Type: Application
    Filed: October 16, 2009
    Publication date: October 27, 2011
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Kyong-jun Yoon, Young-kyun Choi
  • Publication number: 20110201834
    Abstract: The present invention relates to substances which can be applied to the technical fields of gas storages, polymerization catalysts and optical isomers, their intermediates, and processes for preparing the same, which is characterized in that 1) possible disintegration of structure of the scaffold material (SM) is impeded, and 2) they are prepared by a simple manufacturing system as compared to the substances conventionally suggested in the application field. Specifically, it relates to scaffold material-transition metal hydride complexes comprised of scaffold material (SM) and transition metal hydride (M1H(n-1)) which is chemically bonded to the functional groups formed on the scaffold material, SM-transition metal halide complex and SM-transition metal ligand complex as the precursors, and a process for preparing the same. The SM-transition metal hydride complex according to the present invention is a substance for hydrogen storage which adsorbs hydrogen via Kubas adsorption.
    Type: Application
    Filed: January 22, 2010
    Publication date: August 18, 2011
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Jong Sik Kim, Dong Wook Kim, Dong Ok Kim, Gui Ryong Ahn, Jeasung Park, Hyo Jin Jeon, Jisoon Ihm, Moon-Hyun Cha
  • Patent number: 7998450
    Abstract: The present invention relates to a continuous method and apparatus of functionalizing a carbon nanotube, and more specifically, to a continuous method of functionalizing a carbon nanotube under subcritical water or supercritical water conditions without additional functionalizing processes, comprising: a) continuously feeding the carbon nanotube solution and an oxidizer under a pressure of 50 to 400 atm, respectively or together, and then preheating the mixture of said carbon nanotube solution and said oxidizer; b) functionalizing the carbon nanotube in the preheated said mixture under the subcritical water or the supercritical water condition of 50 to 400 atm; c) cooling down the functionalized product into 0 to 100° C. and depressurizing the functionalized product into 1 to 10 atm; and d) recovering the cooled down and depressurized product.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: August 16, 2011
    Assignee: Hanwha Chemical Corporation
    Inventors: Joo Hee Han, Jin Seo Lee, Seung-Hoe Do, Seong Cheol Hong
  • Publication number: 20110162867
    Abstract: Provided are an oxidation stabilizer for polyolefin, and an insulation composition comprising the same. The insulation composition according to the invention is to be used for coating and jacket of wires and cables, especially of telephone cables.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Jehun PARK, Jae Kyu JANG
  • Publication number: 20100330463
    Abstract: The present invention discloses a process for preparing catalyst solution for a membrane-electrode assembly in a fuel cell, which comprises the steps of a) mixing a catalyst solution (Solution A) wherein catalyst particles are dispersed in water and an ion conductive resin solution (Solution B) wherein an ion conductive resin is dissolved in water, low boiling point organic solvent or a mixture thereof, to form a dispersion; b) mixing the dispersion obtained from step a) with functional additive dissolved in high boiling point solvent or a mixture of low boiling point solvent arid water (Solution C) to prepare catalyst ink dispersion; and c) aging the catalyst ink dispersion obtained from step b).
    Type: Application
    Filed: November 6, 2007
    Publication date: December 30, 2010
    Applicant: HANWHA CHEMICAL CORPORATION
    Inventors: Byungchul Jang, Young Taek Kim, Jung-Eun Yang, Youngsu Jiong, Dong Hwan Ryu, Min-Ho Seo