Patents Assigned to Headwaters Technology Innovation, LLC
  • Patent number: 7935652
    Abstract: Nanoparticle catalysts are manufactured by first preparing a solution of a solvent and a plurality of complexed and caged catalyst atoms. Each of the complexed and caged catalyst atoms has at least three organic ligands forming a cage around the catalyst atom. The complexed and caged catalyst atoms are reduced to form a plurality of nanoparticles. During formation of the nanoparticles, the organic ligands provide spacing between the catalyst atoms via steric hindrances and/or provide interactions with a support material. The spacing and interactions with the support material allow formation of small, stable, and uniform nanoparticles.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: May 3, 2011
    Assignee: Headwaters Technology Innovation, LLC.
    Inventors: Zhenhua Zhou, Zhihua Wu, Bing Zhou
  • Patent number: 7935276
    Abstract: The present invention relates to novel composites that incorporate carbon nanospheres into a polymeric material. The polymeric material can be any polymer or polymerizable material compatible with graphitic materials. The carbon nanospheres are hollow, graphitic nanoparticles. The carbon nanospheres can be manufactured from a carbon precursor using templating catalytic nanoparticles. The unique size, shape, and electrical properties of the carbon nanospheres impart beneficial properties to the composites incorporating these nanomaterials.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: May 3, 2011
    Assignee: Headwaters Technology Innovation LLC
    Inventors: Bing Zhou, Cheng Zhang, Martin Fransson, Raymond B. Balée
  • Publication number: 20110095238
    Abstract: The present invention relates to novel composites that incorporate carbon nanospheres into a polymeric material. The polymeric material can be any polymer or polymerizable material compatible with graphitic materials. The carbon nanospheres are hollow, graphitic nanoparticles. The carbon nanospheres can be manufactured from a carbon precursor using templating catalytic nanoparticles. The unique size, shape, and electrical properties of the carbon nanospheres impart beneficial properties to the composites incorporating these nanomaterials.
    Type: Application
    Filed: January 6, 2011
    Publication date: April 28, 2011
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC.
    Inventors: Bing Zhou, Cheng Zhang, Martin Fransson, Raymond B. Balée
  • Patent number: 7892299
    Abstract: Nanoparticle catalysts are manufactured by first preparing a solution of a solvent and a plurality of complexed catalyst atoms. Each of the complexed catalyst atoms has at least three organic ligands. The complexed catalyst atoms are reduced to form a plurality of nanoparticles. During formation of the nanoparticles, the organic ligands provide spacing between the catalyst atoms via steric hindrances and/or provide interactions with a support material. The spacing and interactions with the support material allow formation of small, stable, and uniform nanoparticles. The supported nanoparticle catalyst is then incorporated into a fuel cell electrode.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: February 22, 2011
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Zhenhua Zhou, Zhihua Wu, Bing Zhou
  • Patent number: 7887771
    Abstract: Methods for manufacturing carbon nanostructures include 1) forming intermediate carbon nanostructures by polymerizing a carbon precursor in the presence of templating nanoparticles, 2) carbonizing the intermediate carbon nanostructures to form an intermediate composite nanostructure, and 3) removing the templating nanoparticles from the intermediate composite nanostructure to form carbon nanorings. The carbon nanorings manufactured using the foregoing steps have one or more carbon layers forming a wall that defines a generally annular nanostructure having a hole. The length of the nanoring is less than or about equal to the outer diameter thereof. The carbon nanostructures are well-suited for use as a fuel cell catalyst support. The carbon nanostructures exhibit high surface area, high porosity, high graphitization, and facilitate mass transfer and electron transfer in fuel cell reactions.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: February 15, 2011
    Assignees: Headwaters Technology Innovation, LLC, Dalian Institute
    Inventors: Gongquan Sun, Shuihua Tang, Shiguo Sun, Qin Xin, Changkun Liu, Bing Zhou
  • Patent number: 7856992
    Abstract: Tobacco products and articles are disclosed that include a nanoparticle catalyst. The nanoparticles are capable of degrading undesirable small molecules in tobacco smoke. The nanoparticle catalyst includes a dispersing agent that inhibits the deactivation of the nanoparticle catalyst. One embodiment disclosed has a dispersing agent that anchors the nanoparticles to a support material thereby preventing agglomeration of the nanoparticles. The dispersed nanoparticles exhibit higher activity and reduce the required loading in the tobacco material.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: December 28, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Sukesh Parasher, Michael Rueter, Zhihua Wu
  • Patent number: 7858691
    Abstract: Carbon nanostructures are formed from a carbon precursor and catalytic templating nanoparticles and are treated with a severe oxidative agent to introduce oxygen-containing functional groups to the surface of the graphitic material. Methods for manufacturing carbon nanostructures generally include (1) forming a precursor mixture that includes a carbon precursor and a plurality of catalytic templating particles, (2) carbonizing the precursor mixture to form an intermediate carbon material including carbon nanostructures, amorphous carbon, and catalytic metal, (3) purifying the intermediate carbon material by removing at least a portion of the amorphous carbon and optionally at least a portion of the catalytic metal, and (4) treating the intermediate carbon material with a severe oxidative treatment to increase surface functionalization.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: December 28, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Bing Zhou
  • Publication number: 20100311869
    Abstract: The present invention relates to novel composites that incorporate carbon nanospheres into a polymeric material. The polymeric material can be any polymer or polymerizable material compatible with graphitic materials. The carbon nanospheres are hollow, graphitic nanoparticles. The carbon nanospheres can be manufactured from a carbon precursor using templating catalytic nanoparticles. The unique size, shape, and electrical properties of the carbon nanospheres impart beneficial properties to the composites incorporating these nanomaterials.
    Type: Application
    Filed: August 4, 2010
    Publication date: December 9, 2010
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Bing Zhou, Cheng Zhang, Martin Fransson, Raymond B. Balée
  • Patent number: 7842635
    Abstract: Bimetallic catalyst precursors are manufactured from a plurality of molybdenum atoms and a plurality of atoms of a secondary transition metal (e.g., one or more of cobalt, iron, or nickel). The molybdenum atoms and the secondary transition metal atoms are each bonded with a plurality of organic anions (e.g., 2-ethyl hexanoate) to form a mixture of an oil-soluble molybdenum salt and an oil-soluble secondary transition metal salt. The molybdenum and/or the secondary transition metals are preferably reacted with the organic agent in the presence of a strong reducing agent such as hydrogen. To obtain this mixture of metal salts, an organic agent is reacted with the molybdenum at a temperature between about 100° C. and about 350° C. The secondary transition metal is reacted with the organic agent at a different temperature, preferably between 50° C. and 200° C. The metal salts are capable of forming a hydroprocessing metal sulfide catalyst in heavy oil feedstocks.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: November 30, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Zhenhua Zhou, Zhihua Wu
  • Publication number: 20100270239
    Abstract: A novel zeolite membrane is manufactured using zeolite seeds that are deposited on a support material. The seeds are then further grown in a secondary growth step to form a membrane with inter-grown particles. The pore size of the zeolite membrane is in a range between 3 angstrom and 8 angstrom, which allows water to flow through the membrane at a relatively high flux rate while excluding dissolved ions. The novel zeolite membrane is surprisingly efficient for desalinating sea water using reverse osmosis. The zeolite membrane is capable of high rates of water flux rate and high percentage of ion rejection.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 28, 2010
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: GUANGSHAN ZHU, SHILUN QIU, HE QIU, BING ZHOU
  • Patent number: 7803201
    Abstract: Organically complexed nanocatalyst compositions are applied to or mixed with a carbon-containing fuel (e.g., tobacco, coal, briquetted charcoal, biomass, or a liquid hydrocarbon like fuel oils or gasoline) in order to enhance combustion properties of the fuel. Nanocatalyst compositions can be applied to or mixed with a solid fuel substrate in order to reduce the amount of CO, hydrocarbons and soot produced by the fuel during combustion. In addition, coal can be treated with inventive nanocatalyst compositions to reduce the amount of NOx produced during combustion (e.g., by removing coal nitrogen in a low oxygen pre-combustion zone of a low NOx burner). The nanocatalyst compositions include nanocatalyst particles made using a dispersing agent. They can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a fuel substrate.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: September 28, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Sukesh Parasher, Michael Rueter, Zhihua Wu
  • Publication number: 20100240900
    Abstract: The carbon nanomaterials and methods relate to methods for causing carbon nanospheres to be readily dispersible in a material. The carbon nanospheres are rendered dispersible using a cationic surfactant. The surfactant includes one or more cationic group that can bond to the surface of the carbon nanospheres, without detrimentally affecting the unique properties of carbon nanospheres. The dispersible carbon nanospheres can be dried (i.e., solvent is driven off) while maintaining their dispersibility in solvents and other materials.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Cheng Zhang, Gaurang Bhargava, Bing Zhou
  • Patent number: 7772154
    Abstract: Organic ligands that contain at least one aryl group are immobilized on a solid support. The organic ligands are of the type used to form a catalyst complex suitable for carrying out a catalytic reaction, preferably an asymmetric reaction. To immobilize the organic ligands, a tethering group is bonded to the ligand using, for example, a Friedel-Crafts acylation or alkylation reaction. The immobilization of the organic ligand can be carried out using a single reaction with the organic ligand.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: August 10, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Changkun Liu
  • Publication number: 20100196246
    Abstract: Novel methods for manufacturing carbon nanostructures (e.g., carbon nanospheres) that are highly dispersed include forming a precursor composition, polymerizing the precursor composition, and carbonizing the polymerized material (e.g., through pyrolysis) to form the carbon nanostructures. The precursor composition includes catalytic metals and a crystallizing dispersant. The crystallizing dispersant forms a crystalline phase in the polymerized precursor material which facilitates the formation of dispersed carbon nanostructures during the carbonation step.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 5, 2010
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Cheng Zhang, Bing Zhou
  • Patent number: 7758660
    Abstract: Organically complexed nanocatalyst compositions are applied to or mixed with a carbon-containing fuel (e.g., tobacco, coal, briquetted charcoal, biomass, or a liquid hydrocarbon like fuel oils or gasoline) in order to enhance combustion properties of the fuel. Nanocatalyst compositions can be applied to or mixed with a solid fuel substrate in order to reduce the amount of CO, hydrocarbons, and soot produced by the fuel during combustion. In addition, coal can be treated with inventive nanocatalyst compositions to reduce the amount of NOx produced during combustion (e.g., by removing coal nitrogen in a low oxygen pre-combustion zone of a low NOx burner). The nanocatalyst compositions include nanocatalyst particles made using a dispersing agent. At least a portion of the nanoparticles is crystalline with a spacing between crystal planes greater than about 0.28 nm. The nanocatalyst particles can be activated by heating to a temperature greater than about 75° C., more preferably greater than about 150° C.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: July 20, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Zhihua Wu, Martin Fransson
  • Publication number: 20100133481
    Abstract: The present invention relates to novel composites that incorporate carbon nanospheres into a polymeric material. The polymeric material can be any polymer or polymerizable material compatible with graphitic materials. The carbon nanospheres are hollow, graphitic nanoparticles. The carbon nanospheres can be manufactured from a carbon precursor using templating catalytic nanoparticles. The unique size, shape, and electrical properties of the carbon nanospheres impart beneficial properties to the composites incorporating these nanomaterials.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 3, 2010
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Bing Zhou, Cheng Zhang, Mertin Fransson, Raymond B. Balee
  • Publication number: 20100125035
    Abstract: Methods for manufacturing carbon nanostructures include: 1) forming a plurality of catalytic templating particles using a plurality of dispersing agent molecules; 2) forming an intermediate carbon nanostructure by polymerizing a carbon precursor in the presence of the plurality of templating nanoparticles; 3) carbonizing the intermediate carbon nanostructure to form a composite nanostructure; and 4) removing the templating nanoparticles from the composite nanostructure to yield the carbon nanostructures. The carbon nanostructures are well-suited for use as a catalyst support. The carbon nanostructures exhibit high surface area, high porosity, and high graphitization. Carbon nanostructures according to the invention can be used as a substitute for more expensive and likely more fragile carbon nanotubes.
    Type: Application
    Filed: January 26, 2010
    Publication date: May 20, 2010
    Applicant: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Martin Fransson, Changkun Liu, Bing Zhou
  • Patent number: 7718156
    Abstract: Carbon nanostructures are formed from a carbon precursor and catalytic templating nanoparticles. Methods for manufacturing carbon nanostructures generally include (1) forming a precursor mixture that includes a carbon precursor and a plurality of catalytic templating particles, (2) carbonizing the precursor mixture to form an intermediate carbon material including carbon nanostructures, amorphous carbon, and catalytic metal, (3) purifying the intermediate carbon material by removing at least a portion of the amorphous carbon and optionally at least a portion of the catalytic metal, and (4) heat treating the purified intermediate carbon material and/or treating the purified intermediate carbon material with a base to remove functional groups on the surface thereof. The removal of functional groups increases the graphitic content of the carbon nanomaterial and decreases its hydrophilicity.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: May 18, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Martin Fransson, Bing Zhou
  • Patent number: 7718710
    Abstract: A method for manufacturing stable concentrated colloids containing metal nanoparticles in which the colloid is stabilized by adding a base. This allows the metal particles to be formed in higher concentration without forming larger agglomerates and/or precipitating. The method of manufacturing the stable colloidal metal nanoparticles of the present invention generally includes (i) providing a solution comprising a plurality of metal atoms, (ii) providing a solution comprising a plurality of organic agent molecules, each organic agent molecule comprising at least one functional group capable of bonding to the metal atoms, (iii) reacting the metal atoms in solution with the organic agent molecules in solution to form a mixture comprising a plurality of complexed metal atoms, (iv) reducing the complexed metal atoms in the mixture using a reducing agent to form a plurality of nanoparticles, and (v) adding an amount of a base to the mixture, thereby improving the stability of the nanoparticles in the mixture.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 18, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Sukesh Parasher, Michael A. Rueter, Bing Zhou
  • Patent number: 7718155
    Abstract: Methods for manufacturing carbon nanostructures include: 1) forming a plurality of catalytic templating particles using a plurality of dispersing agent molecules; 2) forming an intermediate carbon nanostructure by polymerizing a carbon precursor in the presence of the plurality of templating nanoparticles; 3) carbonizing the intermediate carbon nanostructure to form a composite nanostructure; and 4) removing the templating nanoparticles from the composite nanostructure to yield the carbon nanostructures. The carbon nanostructures are well-suited for use as a catalyst support. The carbon nanostructures exhibit high surface area, high porosity, and high graphitization. Carbon nanostructures according to the invention can be used as a substitute for more expensive and likely more fragile carbon nanotubes.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: May 18, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Cheng Zhang, Martin Fransson, Changkun Liu, Bing Zhou