Patents Assigned to Healthetech, Inc.
  • Patent number: 7108659
    Abstract: A respiratory analyzer comprises a flow module, having a flow tube through which the flow rate of gases is determined using a flow rate meter, and a computation module, in communication with the flow module, operable to determine a flow rate of respired gases. The computation module may also be operable to determine a metabolic rate of the subject.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: September 19, 2006
    Assignee: HealtheTech, Inc.
    Inventors: Lynette Ross, Dirk Fengels, Edwin M. Pearce, Jr., James R. Mault, Christopher L. Sandys, Tom Kilbourn
  • Patent number: 6955650
    Abstract: An indirect calorimeter for measuring the metabolic rate of a subject includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes, a flow pathway, and a hygiene barrier positioned to block a predetermined pathogen from the exhaled gases. The indirect calorimeter also includes a flow pathway having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The flow pathway includes a flow tube through which the inhaled and exhaled gases pass, an outer housing surrounding the flow tube, and a chamber disposed between the flow tube and the first end.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: October 18, 2005
    Assignee: HealtheTech, Inc.
    Inventors: James R. Mault, Edwin M. Pearce, Jr., Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Patent number: 6899684
    Abstract: A method of determining a respiratory parameter for a subject using an indirect calorimeter is provided. The indirect calorimeter includes a respiratory connector for passing inhaled and exhaled gases, a flow pathway operable to receive and pass inhaled and exhaled gases having a flow tube within the flow pathway through which the inhaled and exhaled gases pass, a flow meter for determining an instantaneous flow volume of the inhaled and exhaled gases, a component gas concentration sensor for determining an instantaneous fraction of a predetermined component gas and a computation unit having a processor and a memory. The method includes the steps of initializing the indirect calorimeter and the subject breathing into the respiratory connector if the indirect calorimeter is initialized, sensing the flow volume of the inhaled and exhaled gases passing through the flow pathway using the flow meter and transmitting a signal representing the sensed flow volume to the computation unit.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: May 31, 2005
    Assignee: HealtheTech, Inc.
    Inventors: James R. Mault, Edwin M. Pearce, Jr., Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Patent number: 6899683
    Abstract: An indirect calorimeter for measuring the metabolic rate of a subject includes a disposable portion and a reusable portion. The disposable portion includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes. The disposable portion also includes a flow pathway operable to receive and pass inhaled and exhaled gases, having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The disposable portion is disposed within the reusable portion, which includes a flow meter, a component gas concentration sensor, and a computation unit. The flow meter generates a signal as a function of the instantaneous flow volume of respiratory gases passing through the flow pathway and the component gas concentration sensor generates a signal as a function of the instantaneous fraction of a predetermined component gas in the exhaled gases.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: May 31, 2005
    Assignee: Healthetech, Inc.
    Inventors: James R. Mault, Edwin M. Pearce, Jr., Theodore W. Barber, Craig M. Lawrence, Timothy J. Prachar, Jeffrey C. Weintraub, Kevin S. Nason
  • Patent number: 6790178
    Abstract: Various physiological monitor modules are provided for use with computing devices such as personal digital assistants (PDAs). In some embodiments, the personal digital assistant provides the controls, display, and processing circuitry for the physiological monitor module. The personal digital assistant stores data from the physiological monitors so that the data may be used in various software applications. In other embodiments, the physiological monitor and the personal digital assistant include accessory slots sized to accept memory modules which may be used to transfer data therebetween. In yet other embodiments, the physiological monitors include data storage but do not include onboard processing capability, and data is transferred to a personal digital assistant either during or after use of the physiological monitor.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: September 14, 2004
    Assignee: Healthetech, Inc.
    Inventors: James R. Mault, Noel Johnson, John Sanderson
  • Patent number: 6645158
    Abstract: An indirect calorimeter for measuring the metabolic activity of a subject includes a respiratory connector operative to be supported in contact with the subject so as to pass inhaled and exhaled gases therethrough as the subject breathes, and a flow tube forming a flow pathway for passing inhaled and exhaled gases therethrough, wherein one end of the flow tube is operatively connected to the respiratory connector and the other end of the flow tube is open, and a wall of the flow tube includes an opening. The indirect calorimeter also includes a flow meter adapted to generate a signal as a function of the instantaneous volume of inhaled and exhaled gases in the flow pathway that is in fluid communication with the flow pathway via the opening in the flow tube, and an oxygen sensor operative to generate a signal as a function of the instantaneous fraction of oxygen in the inhaled and exhaled gases in the flow pathway that is in fluid communication with the flow pathway via the opening in the flow tube.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: November 11, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: 6629934
    Abstract: An improved respiratory analyzer comprises a disposable flow module and non-disposable electronics module. An improved ventilator system comprises a supply of respiratory gases, a ventilator line for directing the respiratory gases to a patient, a flow module holder located in series with the ventilator line into which a flow module can be inserted, and an electronics module which connects to the flow module. In a preferred embodiment, the flow module and electronics module operate in combination to provide the functionality of an indirect calorimeter, so as to determine the metabolic rate of the patient. Feeding of an intubated patient can be controlled using determined patient metabolic rates. Other respiratory parameters can be determined by the system, such as peak flow, tidal volume, end-tidal concentrations, and respiratory quotient. The system provides a non-invasive method of cardiac output determination. A flow module can also be inserted into the mouth or internal respiratory tube of a person.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: October 7, 2003
    Assignee: Healthetech, Inc.
    Inventors: James R. Mault, Edwin M. Pearce, Jr.
  • Patent number: 6620106
    Abstract: An indirect calorimetry system includes transducers sensitive to expired airflow that are enclosed within a calorimeter housing, and a microprocessor in communication with the transducers for calculating expiration characteristics. A graphical display displays the expiration characteristics. A communication link transmits expiration characteristics to external devices such as a computer, communication network, or PDA.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: September 16, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: 6616615
    Abstract: An indirect calorimeter for measuring the subject's oxygen consumption per unit time employs a mouthpiece through which the subject breathes for a period of time. Conduits connect the mouthpiece to a flow meter and a capnometer so that the subject's inhalations and exhalations pass through the flow meter and the exhalations also pass through the capnometer. Electrical signals from the flow meter and capnometer are provided to a computer which calculates the CO2 exhaled by the subject during the test by integrating the instantaneous CO2 content of an exhalation as measured by the capnometer over the volume as measured by the flow meter and subtracts that quantity from the exhaled volume and subtracts their difference from the inhaled volume. In alternative embodiments the system can also measure the subject's Cardiac Output and Delivered Oxygen.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: September 9, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: 6612306
    Abstract: A respiratory nitric oxide meter includes a respiratory connector designed to be supported in contact with a subject and to pass respiratory gases as the subject breathes. A flow pathway receives and passes the respiration gases. One end of the pathway is in fluid communication with the respiratory connector, and the other end is in fluid communication with a reservoir of respiratory gases. A nitric oxide concentration sensor generates electrical signals as a function of the instantaneous fraction of nitric oxide as the respiration gases pass through the flow pathway.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: September 2, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: 6610012
    Abstract: A system and method for remote pregnancy monitoring of a pregnant woman is provided. The system includes an ultrasound transducer positioned on a pregnant woman having a processor, a transmitter and a receiver, and a personal digital assistant operatively connected to the ultrasound transducer via a communication link. The system also includes a patient computer system operatively connected to the personal digital assistant via a second communication link. The system further includes a healthcare provider computer system operatively connected to the patient computer system via an internet, and activation of the ultrasound transducer generates a data signal transmitted to the personal digital assistant via the communication link, and transmission of the signal to the healthcare provider computer system via the second communication link, for monitoring the pregnant woman by a healthcare provider.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: August 26, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: 6607387
    Abstract: A sensor system for diagnosing dental conditions includes a sensor unit which is in contact with an oral fluid such as saliva or gas, and which is operative to provide detectable signals indicative of at least two of hydrogen ion concentration, hydroxyl ion concentration, calcium, phosphate, sulfur, sulfur containing compounds, nitrogen containing compounds, microbial metabolites, and microbes. The system includes a signal processor which is in communication with the sensor unit and which operates to provide a processed signal indicative of one or more dental conditions. The signal processor transmits the processed signal to a storage and display device which displays a user detectable diagnostic message indicative of a dental condition, or suggestive of a remedial action.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: August 19, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: 6572561
    Abstract: An indirect calorimeter operative to measure the respiratory oxygen consumption per unit time of a subject includes a respiratory connector operative to be supported in contact with a subject, so as to pass respiratory gases as the subject breathes into the respiratory connector, and a bi-directional flow meter having an ultrasonic flow transducer that bi-directionally transmits and receives ultrasonic signals to the transducer to generate a signal as a function of the volume of gases passing through the flow meter. The indirect calorimeter also includes a gas concentration sensor operative to generate a signal as a function of an instantaneous carbon dioxide content of gases passing by the gas concentration sensor.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: June 3, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: 6571200
    Abstract: Apparatus for monitoring the caloric expenditure rate of a subject, comprising: a caloric expenditure rate detector for detecting and measuring the caloric expenditure rate of the subject; a body activity detector for detecting and measuring the body activity of the subject; and a processor for storing a measured caloric expenditure rate and a concurrently measured body activity for each of a plurality of different body activities and activity rates, to enable each subsequently detected body activity measurement to be converted to the caloric expenditure rate of the respective subject.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: May 27, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: 6517496
    Abstract: A respiratory gas analyzer for measuring the cardiac output of a subject includes a flow meter and an oxygen sensor interconnected with one another between a mouthpiece and a source of respiratory gases, which may be a controlled source or the atmosphere. An oximeter provides measurements of the oxygen saturation of the subject. A computer connected to receive the signals from the flow meter, oxygen sensor, and oximeter can then calculate the subject's cardiac output.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: February 11, 2003
    Assignee: HealtheTech, Inc.
    Inventor: James R. Mault
  • Patent number: 6513532
    Abstract: A diet and activity-monitoring device includes a timer which outputs a time-indicative signal. A body activity monitor monitors the body activity of a subject and outputs a signal indicative of the body activity. A consumption notation control is provided which the subject may operate to indicate when they consume food. An activity calculator receives the body activity signal and determines a body activity level for the subject. A consumption calculator communicates with the consumption notation control and receives the time-indicative signal. The consumption calculator determines and stores the times when the consumption location control is operated.
    Type: Grant
    Filed: December 23, 2000
    Date of Patent: February 4, 2003
    Assignee: Healthetech, Inc.
    Inventors: James R. Mault, Edwin Pearce, David Gilmore, Roshi Givechi, Jeanne Ragan, Andrzej Skoskiewicz, Neil Grimmer
  • Patent number: 6506608
    Abstract: The oxygen and carbon dioxide content of expired respiratory gas is determined by measuring the mass and volume of the expired breath. From the composition of the inspired gas which may either be assumed or measured, the mass of the inspired volume may be determined, and since the inspired and expired breaths contain the same mass of nitrogen, the oxygen and carbon dioxide content of the expired breath may be determined. Measurements of temperature and humidity may be required to account for temperature and humidity changes between the inhalation and the exhalation or the inhaled gas may be adjusted in temperature and humidity to equalize the inhaled and exhaled temperature and humidity conditions. The mass and volume of the expiration and the volume mass of the inhalations are determined by an ultrasonic transit time system and a gas density sensor.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: January 14, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: 6482158
    Abstract: A system for ultrasonic mammography includes an ultrasonic mammography device for constructing an ultrasonic image of a breast having a support structure with an ultrasonic transducer mounted on the support structure. The system also includes a personal digital assistant operatively connected to the ultrasonic transducer via a communication link, a patient computer system operatively connected to the personal digital assistant via a second communication link, and a healthcare provider computer system operatively connected to the patient computer system via an internet, for constructing the image of the breast. The method includes the steps of positioning the ultrasonic mammography device having an ultrasonic transducer on the patient and activating the ultrasonic transducer to generate a signal for constructing an image of the breast.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: November 19, 2002
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault
  • Patent number: D476413
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: June 24, 2003
    Assignee: Healthetech, Inc.
    Inventors: Edwin M. Pearce, Jr., Todd Rodericks
  • Patent number: D478660
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: August 19, 2003
    Assignee: Healthetech, Inc.
    Inventor: James R. Mault