Patents Assigned to Heartware, Inc.
  • Patent number: 11977357
    Abstract: An apparatus for starting operation of a motor of an implantable blood pump including a memory storing one or more default parameters for at least one of controlling and monitoring the startup operation. A processor operatively coupled to the motor is included, the processor is configured to: commence the startup operation based on the one or more default parameters; detect an error during the startup operation; adjust at least one of the one or more default parameters in response to the detected error; store the at least one adjusted parameter in the memory; and commence subsequent startup operations based at least in part on the at least one adjusted parameter.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: May 7, 2024
    Assignee: HeartWare, Inc.
    Inventor: John Rudser
  • Patent number: 11969586
    Abstract: An implantable blood pump including an impeller, at least a portion of the impeller being composed of a metal alloy that is a solid at normal body temperature and is configured to phase change to a liquid between a predetermined temperature above normal body temperature and about 40 degrees Celsius.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: April 30, 2024
    Assignee: HeartWare, Inc.
    Inventors: Fernando Casas, Mustafa Ertan Taskin
  • Patent number: 11969588
    Abstract: A method of operating an implantable blood pump having a first stator, a second stator, and an impeller movably disposed there between. The method includes applying a first voltage waveform at first phase to the first stator to generate a magnetic field to rotate the impeller. A second voltage waveform is applied at a second phase shifted from the first phase to the second stator to rotate the impeller, the second voltage waveform is asymmetric to the first voltage waveform.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: April 30, 2024
    Assignee: HeartWare, Inc.
    Inventors: Mark S. Egler, Fernando Casas, Carlos Reyes, Jeffrey A. LaRose
  • Patent number: 11896814
    Abstract: An attachment device has a sewing ring frame and a locking mechanism movably mounted on the sewing ring frame. The locking mechanism includes a biasing element projecting from the outer surface of the sewing ring frame and a slide substantially co-planar to the sewing ring frame. The slide further includes a first mating member. Additionally, the locking mechanism includes at least one guide member overlapping the slide and a locking pin disposed between the slide and the sewing ring frame. The biasing element is movably coupled to the locking pin and the slide and is transitionable between a first configuration in which the first mating member is in a disengaged position to a second configuration in which the first mating member is in an engaged position.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: February 13, 2024
    Assignee: HeartWare, Inc.
    Inventor: Charles R. Shambaugh, Jr.
  • Patent number: 11826127
    Abstract: A blood pump including a housing having an inlet element, the inlet element including a distal portion coupled to the housing and a proximal portion sized to be received within at least a portion of a heart of a patient and a rotor configured to rotate within the housing and impel blood from the heart. At least one pressure sensor is coupled to the proximal portion of the inlet element.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: November 28, 2023
    Assignee: HeartWare, Inc.
    Inventor: Fernando Casas
  • Patent number: 11806518
    Abstract: An implantable blood pump includes a tube including an inner wall, and wherein during operation of the blood pump, the impeller rotates within the tube and a distance between the inner wall of the tube and the thrust bearing decreases as a speed of the impeller increases.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: November 7, 2023
    Assignee: HeartWare, Inc.
    Inventors: Christopher M. Michelena, David A. Schafir, Fernando Casas, Mustafa Ertan Taskin
  • Patent number: 11707617
    Abstract: A control circuit for a sensorless implantable blood pump configured to determine mitral valve regurgitation includes processing circuitry configured to generate an estimated blood flow waveform from the sensorless implanted blood pump and generate an alert if between an end period of diastole and a beginning period of systole a measured amplitude of the estimated blood flow waveform does not include an inflection point.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: July 25, 2023
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Neethu Lekshmi Vasudevan Jalaja
  • Patent number: 11701510
    Abstract: A blood pump including a housing having an inflow tube defining a major axis spanning through the inflow tube and a flow path spanning along the major axis, a rotor disposed within the inflow tube, the rotor and the inflow tube defining a gap therebetween, a stator surrounding the inflow tube and the rotor, and the housing defining an access conduit spanning through the inflow tube and the stator transverse to the major axis, the access conduit being in communication with the gap.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: July 18, 2023
    Assignee: HeartWare, Inc.
    Inventor: Zoe N. Demou
  • Patent number: 11694539
    Abstract: A controller for an implantable blood pump including processing circuitry in communication with the implantable blood pump and configured to generate at least one preventative alert.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: July 4, 2023
    Assignee: HeartWare, Inc.
    Inventors: D'Anne E. Kudlik, Joseph Ippolito
  • Patent number: 11653841
    Abstract: A method of determining a mean arterial pressure index of a patient having an implantable blood pump including determining a pump speed and a pump flow value; analyzing the pump speed and the pump flow value to a pump loss constant value; determining a graft hydraulic resistance value during a systolic phase of a cardiac cycle based on the analysis of the pump speed and the pump flow value to the pump loss constant value; determining a mean arterial pressure index during a diastolic phase of the cardiac cycle based on the determined graft hydraulic resistance value; comparing the mean arterial pressure index of the patient to a mean arterial pressure index range; and generating an alert when the mean arterial pressure index varies with respect to a mean arterial pressure index range.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 23, 2023
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Fernando Casas
  • Patent number: 11648393
    Abstract: An inflow cannula for an implantable blood pump having an impeller defining a plurality of flow channels, the inflow cannula includes a proximal end a distal end proximate the impeller, the distal end including a protuberance extending outward from the inflow cannula.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: May 16, 2023
    Assignee: HeartWare, Inc.
    Inventors: Mustafa E. Taskin, Charles R. Shambaugh
  • Patent number: 11554260
    Abstract: A method of responding to an adverse event associated with an implantable blood pump including detecting the adverse event, reducing a pump speed of the blood pump relative to a set pump speed in response to the detected adverse event, and determining whether at least one of a group consisting of the adverse event and a second adverse event is present following the reducing of the pump speed of the blood pump. If the at least one of the group consisting of the adverse event and a second adverse event is not present, the method includes increasing the pump speed to the set pump speed and if the at least one of the group consisting of the adverse event and a second adverse event is present while increasing the pump speed to the set pump speed, the method includes reducing the pump speed to a maximum safe operating speed.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: January 17, 2023
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Katherine Chorpenning, Antonio Luiz Silva Ferreira, Neethu Lekshmi Vasudevan Jalaja, Justin Wolman, Fernando Casas
  • Patent number: 11534596
    Abstract: An inflow cannula for an implantable blood pump, the inflow cannula defining an inlet at a proximal end, an opposite distal end, and a lumen therebetween, the inflow cannula being configured to constrict the lumen.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: December 27, 2022
    Assignee: Heartware, Inc.
    Inventors: David A. Schafir, Fernando Casas
  • Patent number: 11460030
    Abstract: A connection system for an implantable blood pump including a pump housing having an impeller disposed therein and a motor housing including a motor disposed therein, the motor housing spaced a distance from the pump housing. A flexible outer sheath couples the pump housing to the motor housing, the outer sheath defining a maximum total length between 7 and 10 centimeters. An inner shaft is coaxial with the outer sheath and couples the motor to the impeller.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: October 4, 2022
    Assignee: Heartware Inc.
    Inventors: Charles R. Shambaugh, Jeffrey A. LaRose, Mustafa E. Taskin
  • Patent number: 11446481
    Abstract: A method of controlling an implantable blood pump including a housing having a proximal portion including an inlet, a distal portion including an outlet, and an impeller therein, the method including detecting when a pressure in the housing exceeds a pressure threshold and executing a first vector control command to displace the impeller axially in a distal direction from a primary position to a secondary position different than the primary position in response to the pressure exceeding the pressure threshold.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: September 20, 2022
    Assignee: HEARTWARE, INC.
    Inventors: Justin Wolman, Fernando Casas, Carlos Reyes, Thomas R. Johnson
  • Patent number: 11413445
    Abstract: A method of predicting an adverse event in a patient having an implantable blood pump including correlating a pulsatility value to a flow trough value associated with the blood pump to determine a flow peak value; dividing the determined flow peak value by a pump current to determine a pulsatility peak value; tracking a first moving average of the pulsatility peak value, the first moving average defining a threshold range; tracking a second moving average of the pulsatility peak value, the second moving average being faster than the first moving average; and generating an alert when the second moving average deviates from the threshold range.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: August 16, 2022
    Assignee: HEARTWARE, INC.
    Inventors: Michael Brown, Amy B. Cheng, Veronica Ramos, Neethu Lekshmi Vasudevan Jalaja, Alonso Trejo-Mora
  • Patent number: 11389639
    Abstract: An implantable blood pump comprising a housing. At least one stator is disposed within the housing. A rotor is disposed within the housing, the at least one stator being configured to rotate the rotor when current is applied to the stator. At least one at least partially piezoelectric disk is disposed within the housing.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: July 19, 2022
    Assignee: HEARTWARE, INC.
    Inventor: Fernando Casas
  • Patent number: 11376419
    Abstract: A method of controlling a blood pump having a predefined hydraulic performance including at least from the group consisting of estimating and measuring an instantaneous flow rate during operation of the blood pump at a predetermined rotational speed of an impeller of the blood pump, the instantaneous flow rate including a plurality of flow rate data points. The plurality of flow rate data points define a trajectory around at least one from the group consisting of an operational point of a predefined pressure-flow curve associated with the predetermined rotational speed of the impeller of the blood pump and a target operational point of a target pressure-flow curve different than the predefined pressure-flow curve. The predetermined rotational speed of the impeller is adjusted until the plurality of flow rate data points define a predetermined trajectory around at least one of the operational point and the target operational point.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: July 5, 2022
    Assignee: HEARTWARE, INC.
    Inventors: Carlos Reyes, Fernando Casas
  • Patent number: 11364374
    Abstract: An apparatus for protecting heart tissue from an implanted inlet element of a blood pump. The apparatus includes a flange member having a first radially constricted configuration and a second radially expanded configuration, the flange member being biased in its second radially expanded configuration. The flange member defines an opening there through sized to receiving the inlet element of the blood pump. A retaining element extending from the flange member is included, the retaining element being flexible and sized to be disposed about at least a portion of the inlet element.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: June 21, 2022
    Assignee: HeartWare, Inc.
    Inventors: Jeffrey A. Larose, Lance Lynn Andrus
  • Patent number: 11351360
    Abstract: The present disclosure relates to an improved transcutaneous energy transfer (TET) system that generates and wirelessly transmits a sufficient amount of energy to power one or more implanted devices, including a heart pump, while maintaining the system's efficiency, safety, and overall convenience of use. The disclosure further relates one or more methods of operation for the improved system.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: June 7, 2022
    Assignee: HeartWare, Inc.
    Inventors: John Rudser, Stefan Schwarzbach