Patents Assigned to Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie
  • Patent number: 10316301
    Abstract: The present invention relates to a method for preparing an expression vector encoding a tailored recombinase, which tailored recombinase is capable of recombining asymmetric target sequences within the long terminal repeat (LTR) of proviral DNA of a plurality of retrovirus strains inserted into the genome of a host cell, as well as to the obtained expression vector, cells transfected with this, expressed recombinase and pharmaceutical compositions comprising the expression vector, cells and/or recombinase. Pharmaceutical compositions are useful, e.g., in treatment and/or prevention of retrovirus infection. In particular, asymmetric target sequences present in a plurality of HIV strains are disclosed, as well as tailored recombinases capable of combining these sequences (Tre 3.0 and 4.0) and expression vectors encoding them.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: June 11, 2019
    Assignees: Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Max-Planck-Gesellschaft Zur Förderung der Wissenschaften E.V.
    Inventors: Joachim Hauber, Jan Chemnitz, Frank Buchholz, Janet Chusainow
  • Patent number: 10150953
    Abstract: The present invention relates to a method for preparing an expression vector encoding a well-tolerated and highly specific tailored recombinase, which tailored recombinase is capable of recombining asymmetric target sequences within the long terminal repeat (LTR) of proviral DNA of a plurality of retrovirus strains which may be inserted into the genome of a host cell, as well as to the obtained expression vector, cells transfected with these, expressed recombinase and pharmaceutical compositions comprising the expression vector, cells and/or recombinase. Pharmaceutical compositions are useful, e.g., in treatment and/or prevention of retrovirus infection, in particular, HIV infection. In particular, the invention relates to well-tolerated and highly specific tailored recombinases capable of combining asymmetric target sequences in a more than 90% of HIV-strains, thereby excising the HIV-1 sequences, and expression vectors encoding them.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: December 11, 2018
    Assignees: Heinrich-Pette-Institut Leibniz-Institut für Experimentelle Virologie-Stiftung bürgerlichen Rechts, Technische Universität Dresden
    Inventors: Joachim Hauber, Jan Chemnitz, Frank Buchholz, Janet Karpinski
  • Publication number: 20140050668
    Abstract: The present invention relates to the field of in vivo determination of enzyme activity. It also allows visualization of organisms, organs, tissues and cells. In particular, the present invention provides a method of in vivo visualization and a composition suitable for in vivo determination and/or visualization of enzyme activity by methods such as Magnetic Resonance Imaging, also called Magnetic Resonance Tomography (MRI or MRT), or Magnetic Particle Imaging (MPI). In particular, the activity of the enzyme lipoprotein lipase affects the signals received and allows conclusions on the lipid metabolism of an organism, an organ system, an organ, a tissue and a cell of interest, This method can be employed, e.g., for diagnosis of cardiac disorders, of tumor prognosis and of disorders of the lipid metabolism. The composition used comprises superparamagnetic iron oxide nanocrystals (SPIO) incorporated in the core of lipid micelles designated nanosomes.
    Type: Application
    Filed: January 20, 2012
    Publication date: February 20, 2014
    Applicants: UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF, HEINRICH-PETTE-INSTITUT LEIBNIZ-INSTITUT FUER EXPERIMENTELLE VIROLOGIE STIFTUNG BUERGERLICHEN RE, CENTRUM FUR ANGEWANDTE NANOTECHNOLOGIE (CAN) GMBH
    Inventors: Oliver Bruns, Heinrich Hohenberg, Rudolph Reimer, Ulrich Tromsdorf, Horst Weller, Gerhard Adam, Harald Ittrich, Michael Kaul, Peter Nielsen, Barbara Freund, Alexander Bartelt, Jörg Heeren