Abstract: A fluid storage tank including an entrained air removal mechanism is provided. The entrained air removal mechanism assists in consolidating small air bubbles entrained within the fluid into larger bubbles such that the air bubbles have sufficient buoyancy to escape the fluid flow. The entrained air removal mechanism may be in the form of a plurality of saw toothed slots communicating different chambers within the fluid storage tank. The fluid storage tank can also be configured to direct fluid flow towards the sidewalls of the fluid storage tank as the fluid transitions from one chamber to another to promote heat transfer out of the fluid storage tank and to avoid the fluid within the tank acting as a thermal insulator.
Abstract: A hydraulic storage tank is provided. The hydraulic storage tank includes a storage tank, a return flow filtration chamber, a contaminant containment chamber (CCC) and a tube connecting the return flow filtration chamber with the CCC. The storage tank defines a reservoir for storing hydraulic fluid. The return flow filtration chamber is configured to house a return flow filter. The CCC includes a boundary wall bounding a cavity and a CCC outlet fluidly communicating the cavity with the reservoir. The CCC outlet is radially inward from the boundary wall. The tube defines a discharge passage fluidly connecting the filtration chamber with the cavity of the CCC and includes an inlet in fluid communication with the filtration chamber and an outlet in fluid communication with the CCC. The outlet of the tube directs fluid in angular direction about an axis defined by the contaminant containment chamber outlet.
Abstract: A return flow filtration assembly for filtering return hydraulic fluid is provided. The filtration assembly includes a first return fluid chamber including a first inlet and first and second of outlets. The second outlet is configured to be coupled to a secondary return flow filter for providing micro-filtering of the return fluid. The first outlet includes a restriction element for restricting flow through the first outlet and generating an artificial back pressure within the first return fluid chamber to drive fluid through the second outlet, when the second outlet is coupled to a secondary return flow filter.
Abstract: A breather for a fluid storage tank, a storage tank incorporating same, and a method of releasing pressure in a fluid storage tank is provided. The present invention permits graduated release of pressure within the storage tank by allowing for varied flow rates of air out of the storage tank. In one embodiment, a valve assembly is provided that includes a valve member that has a graduated release feature that adjusts the size of a gap though the valve assembly formed between the valve member and a corresponding valve seat.