Patents Assigned to Hellma Materials GmbH
  • Patent number: 11294077
    Abstract: A method for multidimensional direction measurement of gamma radiation in the far field by means of a group of several energy discriminating detectors synchronized with each other for detection of radiation can use unidirectional and bidirectional Compton scattering processes and lookup tables LUTSK, a defined functional value f(E1,E2), a list of defined detector pairs with an identification number i for defined detector pairs, and one or more frequency distributions Y for the acquisition of the measurement values. In some embodiments, the method can include setting up a detector system, acquiring measurement values, associating coincidence events with an Identification number, calculating a functional value, acquiring coincidence events in frequency distributions, and calculating one or more direction distributions from the frequency distributions.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: April 5, 2022
    Assignee: Hellma Materials GmbH
    Inventor: Sibylle Petrak
  • Patent number: 11243312
    Abstract: A device for generating one or more images of a source distribution of a gamma radiation field in the near and far field can include a detector system that includes several synchronized detectors for detecting radiation, system electronics that registers coincidence events, a data acquisition system that stores the measurement data of the coincidence events, and an analysis unit that performs an image reconstruction, which reconstructs one or more images of the source distribution of the radiation field.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: February 8, 2022
    Assignee: Hellma Materials GmbH
    Inventor: Sibylle Petrak
  • Patent number: 8673179
    Abstract: The scintillation material has a maximum oxygen content of 2,500 ppm and is a compound of formula LnX3 or LnX3:D, wherein Ln is at least one rare earth element, X is F, Cl, Br, or I; and D is at least one cationic dopant of one or more of the elements Y, Zr, Pd, Hf and Bi and, if present, is present in an amount of 10 ppm to 10,000 ppm. The process of making the scintillation material includes optionally mixing the compound of the formula LnX3 with the at least one cationic dopant, heating the compound or the mixture so obtained to a melting temperature to form a melt, adding one or more carbon halides and then cooling the melt to form a crystal or crystalline structure. The maximum oxygen content of the scintillation material is preferably 1000 ppm.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: March 18, 2014
    Assignee: Hellma Materials GmbH
    Inventors: Johann-Christoph Von Saldern, Christoph Seitz, Lutz Parthier, Jochen Alkemper
  • Patent number: 7968074
    Abstract: The method produces low-stress, large-volume crystals with low birefringence and uniform index of refraction. The method includes growing the crystal with larger than desired dimensions including diameter and height from a melt; cooling and tempering the crystal with the larger than desired dimensions and after the cooling and tempering removing edge regions of the crystal with the larger than desired dimensions so that a diameter reduction and a height reduction of at least five percent occurs respectively and so that the crystal has the desired dimensions of diameter and height. No further tempering takes place after removing of the edge regions.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: June 28, 2011
    Assignee: Hellma Materials GmbH & Co. KG
    Inventors: Lutz Parthier, Joerg Staeblein, Gunther Wehrhan, Christian Kusch
  • Patent number: 7883578
    Abstract: Homogeneity residuals of the refractive index have a strong influence on the performance of lithography tools for both 193 and 157 nm application wavelengths. By systematic investigations of various defects in the real structure of CaF2 crystals, the origin of homogeneity residuals can be shown. Based on a quantitative analysis we define limiting values for the individual defects which can be either tolerated or controlled by optimized process steps, e.g. annealing. These correlations were carried out for all three relevant main crystal lattice orientations of CaF2 blanks. In conclusion we achieved a strong improvement of the critical parameters of both refractive index homogeneity and striae for large size lens blanks up to 270 mm diameter.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: February 8, 2011
    Assignee: Hellma Materials GmbH & Co. KG
    Inventors: Lutz Parthier, Michael Selle, Erik Foerster
  • Patent number: 7873084
    Abstract: A process and a device is described to avoid the depolarization of linear-polarized light during the transmission of light through crystals exhibiting a {111} or {100} crystal plane, respectively, and a <100> or <111> crystal axis, respectively. The device is characterized in that the linear-polarized light meets the surface of the crystals in an angle of 45-75°, whereby the surface is formed by the {111} or the {100} plane. The crystal is arranged in such a way that upon entering the crystal, the light spreads along the <100> or <111> crystal axis, respectively, as parallel as possible, and/or that the device comprises a unit for temperature equalization to avoid a thermal gradient in the crystal.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: January 18, 2011
    Assignee: Hellma Materials GmbH & Co. KG
    Inventors: Ute Natura, Martin Letz, Lutz Parthier
  • Patent number: 7837969
    Abstract: The method of making a single crystal, especially a CaF2 single crystal, includes tempering, in which the crystal is heated at <18 K/h to a temperature of 1000° C. to 1350° C. and held at this temperature for at least 65 hours with maximum temperature differences within the crystal of <0.2 K. Subsequently the crystal is cooled with a cooling rate of at maximum 0.5 K/h above a limiting temperature between 900° C. to 600° C. and then further below this limiting temperature at maximum 3 K/h. The obtained CaF2 crystals have refractive index uniformity <0.025×10?6 (RMS) in a (111)-, (100)- or (110)-direction and a stress birefringence of less than 2.5 nm/cm (PV) and/or a stress birefringence of less than 1 nm/cm (RMS) in the (100)- or (110)-direction. In the (111)-direction the stress birefringence is <0.5 nm/cm (PV) and/or the stress birefringence is <0.15 nm/cm (RMS).
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: November 23, 2010
    Assignee: Hellma Materials GmbH & Co. KG
    Inventors: Joerg Staeblein, Lutz Parthier
  • Patent number: 7825387
    Abstract: A method is described for quantitative determination of suitability of an optical material, especially alkali halide and alkaline earth halide single crystals, for optical components exposed to high energy densities, especially of pulsed laser light at wavelengths under 250 nm. In this procedure radiation-dependent transmission of the optical material is determined at ultraviolet wavelengths by fluorescence measurements for fluorescence induced by ultraviolet radiation at these ultraviolet wavelengths. This is accomplished by a method including determining an induced fluorescence maximum of a non-linear absorption process, measuring a slope (|dT/dH|) of a functional relationship representing the dependence of the radiation-dependent transmission on fluence (H) for the induced fluorescence and determining radiation-dependent transmissions from this slope for particular fluence values.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: November 2, 2010
    Assignee: Hellma Materials GmbH & Co. KG
    Inventors: Christian Muehlig, Wolfgang Triebel, Gabriela Toepfer, Regina Martin
  • Patent number: 7822093
    Abstract: The apparatus for extending or lengthening a laser pulse has a beam splitter. An incident laser pulse is split by the beam splitter into at least one first partial pulse and a second partial pulse. The first partial pulse is conducted through a delaying travel path section with a number of reflectors. The apparatus is characterized by a plurality of the variable delaying travel path sections which produce different length laser beam pulses from a single incident laser pulse.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: October 26, 2010
    Assignee: Hellma Materials GmbH & Co. KG
    Inventors: Alfons Burkert, Joachim Bergmann, Wolfgang Triebel, Ute Natura