Abstract: The method produces low-stress, large-volume crystals with low birefringence and uniform index of refraction. The method includes growing the crystal with larger than desired dimensions including diameter and height from a melt; cooling and tempering the crystal with the larger than desired dimensions and after the cooling and tempering removing edge regions of the crystal with the larger than desired dimensions so that a diameter reduction and a height reduction of at least five percent occurs respectively and so that the crystal has the desired dimensions of diameter and height. No further tempering takes place after removing of the edge regions.
Type:
Grant
Filed:
February 22, 2005
Date of Patent:
June 28, 2011
Assignee:
Hellma Materials GmbH & Co. KG
Inventors:
Lutz Parthier, Joerg Staeblein, Gunther Wehrhan, Christian Kusch
Abstract: Homogeneity residuals of the refractive index have a strong influence on the performance of lithography tools for both 193 and 157 nm application wavelengths. By systematic investigations of various defects in the real structure of CaF2 crystals, the origin of homogeneity residuals can be shown. Based on a quantitative analysis we define limiting values for the individual defects which can be either tolerated or controlled by optimized process steps, e.g. annealing. These correlations were carried out for all three relevant main crystal lattice orientations of CaF2 blanks. In conclusion we achieved a strong improvement of the critical parameters of both refractive index homogeneity and striae for large size lens blanks up to 270 mm diameter.
Type:
Grant
Filed:
February 23, 2005
Date of Patent:
February 8, 2011
Assignee:
Hellma Materials GmbH & Co. KG
Inventors:
Lutz Parthier, Michael Selle, Erik Foerster
Abstract: A process and a device is described to avoid the depolarization of linear-polarized light during the transmission of light through crystals exhibiting a {111} or {100} crystal plane, respectively, and a <100> or <111> crystal axis, respectively. The device is characterized in that the linear-polarized light meets the surface of the crystals in an angle of 45-75°, whereby the surface is formed by the {111} or the {100} plane. The crystal is arranged in such a way that upon entering the crystal, the light spreads along the <100> or <111> crystal axis, respectively, as parallel as possible, and/or that the device comprises a unit for temperature equalization to avoid a thermal gradient in the crystal.
Abstract: The method of making a single crystal, especially a CaF2 single crystal, includes tempering, in which the crystal is heated at <18 K/h to a temperature of 1000° C. to 1350° C. and held at this temperature for at least 65 hours with maximum temperature differences within the crystal of <0.2 K. Subsequently the crystal is cooled with a cooling rate of at maximum 0.5 K/h above a limiting temperature between 900° C. to 600° C. and then further below this limiting temperature at maximum 3 K/h. The obtained CaF2 crystals have refractive index uniformity <0.025×10?6 (RMS) in a (111)-, (100)- or (110)-direction and a stress birefringence of less than 2.5 nm/cm (PV) and/or a stress birefringence of less than 1 nm/cm (RMS) in the (100)- or (110)-direction. In the (111)-direction the stress birefringence is <0.5 nm/cm (PV) and/or the stress birefringence is <0.15 nm/cm (RMS).
Abstract: A method is described for quantitative determination of suitability of an optical material, especially alkali halide and alkaline earth halide single crystals, for optical components exposed to high energy densities, especially of pulsed laser light at wavelengths under 250 nm. In this procedure radiation-dependent transmission of the optical material is determined at ultraviolet wavelengths by fluorescence measurements for fluorescence induced by ultraviolet radiation at these ultraviolet wavelengths. This is accomplished by a method including determining an induced fluorescence maximum of a non-linear absorption process, measuring a slope (|dT/dH|) of a functional relationship representing the dependence of the radiation-dependent transmission on fluence (H) for the induced fluorescence and determining radiation-dependent transmissions from this slope for particular fluence values.
Type:
Grant
Filed:
November 10, 2006
Date of Patent:
November 2, 2010
Assignee:
Hellma Materials GmbH & Co. KG
Inventors:
Christian Muehlig, Wolfgang Triebel, Gabriela Toepfer, Regina Martin
Abstract: The apparatus for extending or lengthening a laser pulse has a beam splitter. An incident laser pulse is split by the beam splitter into at least one first partial pulse and a second partial pulse. The first partial pulse is conducted through a delaying travel path section with a number of reflectors. The apparatus is characterized by a plurality of the variable delaying travel path sections which produce different length laser beam pulses from a single incident laser pulse.
Type:
Grant
Filed:
September 22, 2008
Date of Patent:
October 26, 2010
Assignee:
Hellma Materials GmbH & Co. KG
Inventors:
Alfons Burkert, Joachim Bergmann, Wolfgang Triebel, Ute Natura