Abstract: A temperature sensor is provided with a temperature-sensitive element on a surface of a monocrystalline substrate, wherein the temperature-sensitive element is made of a platinum thin-film resistor and is produced as an epitaxial layer. The monocrystalline substrate can be an electrically insulating material, preferably &agr;-Al2O3 or MgO. Alternatively, the substrate may be an electrically conducting material, such as silicon, with an electrically insulating epitaxial layer arranged between the substrate and the platinum thin-film resistor. The platinum thin-film resistor epitaxial layer is preferably deposited by physical vapor deposition (PVD), chemical vapor deposition (CVD), or molecular beam epitaxy (MBE).
Abstract: An apparatus is provided for determining the temperature of a flowing medium in a pipe or tube conduit. The apparatus has a sensor element formed from a ceramic substrate and a thin-film resistor arranged on the substrate and electrically and mechanically connected to at least two electrical leads. The sensor element is arranged in a plastic housing having an opening at least for the pipe or tube and being formed as a molded part. The electrical leads are formed from metal strips, each having first and second ends, with the sensor element arranged at the first end of the metal strips. The plastic housing is molded around the metal strips in a region between their first and second ends, and preferably forms a plug at the second end of the metal strips.
Abstract: A semiconductor component with an integrated circuit has a cooling body as a heat sink and a temperature sensor thermally connected thereto, whose resistance is dependent on temperature. The temperature sensor contains a thin film measuring resistor, which is applied to an electrically insulating surface of a foil-like substrate, and the total thickness of the temperature sensor lies in a range of about 10 &mgr;m to 100 &mgr;m. The thin film measuring resistor is formed as a planar component, with the temperature sensor being arranged between the integrated circuit and the cooling body. The thin film measuring resistor is provided on one side with a thermal coupling layer bordering on the cooling body, while on the other side the resistor has a substrate bordering on a heat distributor, which at least partially surrounds the integrated circuit.
Abstract: A flow sensor element is provided having at least one temperature-measuring element and at least one heating element each having at least one platinum thin film resistor, the at least one temperature-measuring element and the at least one heating element each being arranged on a carrier element which is formed from a ceramic foil laminate or a multi-part ceramic component. The carrier elements have electrical conductor paths and junction surfaces for electrically contacting the at least one temperature-measuring element and the at least one heating element. The at least one temperature-measuring element and the at least one heating element each have a metallic carrier foil with an electrically insulating coating, on which the platinum thin film resistors are arranged. The flow sensor element may be used for mass through-flow measurements of gaseous or liquid media in pipe ducts, for example in an exhaust gas pipe of an internal combustion engine.