Patents Assigned to Hexablock, Inc.
  • Patent number: 6706097
    Abstract: A molecular sieve apparatus and magnetic/adsorbent material composition facilitate molecular adsorption and separation using a magnetic field to hold, move, cool, and/or heat an adsorbent 1 that is bonded to magnetic materials 3 that are moveable by a magnetic field. An adsorbent 1 is bonded to a soft magnetic material 3 with a binder 2 into a powder composite material adsorbent attractable by a magnetic field (magnetoadsorbent 4). Magnetoadsorbent 4 functions to adsorb and desorb working substances, causing a molecular separation; thereby increasing the efficiency of the adsorption cycle by moving the adsorbent 1 to a location that optimally processes the adsorbent 1. Magnetic field manipulation of adsorbents 1 enables delivery of molecules to locations within systems. Magnetoadsorbents 4 of the present invention further increase the efficiency of the adsorption cycle by combining materials with functions including: catalyst, buoyancy, suspension, magnetic heating, and sinking in liquid.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: March 16, 2004
    Assignee: Hexablock, Inc.
    Inventor: David A. Zornes
  • Patent number: 6631603
    Abstract: A building structure offset uses hexagon structures assembled in an offset layering architecture to construct walls, floors and roofs. Hexagon building structures include interior panels adhered to both sides of a foam core. The structures also include radial cutouts the corners for offset layering assembly with another structure. Peg retainers selectively secure the hexagon building structures together. Fastening holes provide fastener locations for screwing or bolting through the layers of the hexagon structures. The holes align with an offset layer of hexagons when assembled in the axial direction. Conduit holes are selectively located depending on the fastening technique selected. The system includes five derivatives of hexagon building structures and a header, providing square, triangular, and curved geometries when assembled. Since hexagon buildings are built from hexagon building structures without customization, hexagon buildings can be rebuilt, modified, or recycled using the same materials.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: October 14, 2003
    Assignee: Hexablock, Inc.
    Inventor: David A. Zornes
  • Publication number: 20020069603
    Abstract: A building structure offset uses hexagon structures assembled in an offset layering architecture to construct walls, floors and roofs. Hexagon building structures include interior panels adhered to both sides of a foam core. The structures also include radial cutouts the corners for offset layering assembly with another structure. Peg retainers selectively secure the hexagon building structures together. Fastening holes provide fastener locations for screwing or bolting through the layers of the hexagon structures. The holes align with an offset layer of hexagons when assembled in the axial direction. Conduit holes are selectively located depending on the fastening technique selected. The system includes five derivatives of hexagon building structures and a header, providing square, triangular, and curved geometries when assembled. Since hexagon buildings are built from hexagon building structures without customization, hexagon buildings can be rebuilt, modified, or recycled using the same materials.
    Type: Application
    Filed: June 11, 2001
    Publication date: June 13, 2002
    Applicant: Hexablock, Inc.
    Inventor: David A. Zornes
  • Publication number: 20020066368
    Abstract: A molecular sieve apparatus and magnetic/adsorbent material composition facilitate molecular adsorption and separation using a magnetic field to hold, move, cool, and/or heat an adsorbent 1 that is bonded to magnetic materials 3 that are moveable by a magnetic field. An adsorbent 1 is bonded to a soft magnetic material 3 with a binder 2 into a powder composite material adsorbent attractable by a magnetic field (magnetoadsorbent 4). Magnetoadsorbent 4 functions to adsorb and desorb working substances, causing a molecular separation; thereby increasing the efficiency of the adsorption cycle by moving the adsorbent 1 to a location that optimally processes the adsorbent 1. Magnetic field manipulation of adsorbents 1 enables delivery of molecules to locations within systems. Magnetoadsorbents 4 of the present invention further increase the efficiency of the adsorption cycle by combining materials with functions including: catalyst, buoyancy, suspension, magnetic heating, and sinking in liquid.
    Type: Application
    Filed: June 29, 2001
    Publication date: June 6, 2002
    Applicant: Hexablock, Inc.
    Inventor: David A. Zornes