Patents Assigned to HiFi Engineering, Inc.
  • Patent number: 11085758
    Abstract: Methods, systems, and techniques for determining whether an event has occurred from dynamic strain measurements involve determining, using a processor, at least one event parameter from a signal representing the dynamic strain measurements, and then having the processor use the at least one event parameter to determine whether the event has occurred. The at least one event parameter is any one or more of a measure of magnitude of the signal, frequency centroid of the signal, filtered baseline of the signal, harmonic power of the signal, and time-integrated spectrum flux of the signal.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 10, 2021
    Assignee: Hifi Engineering, Inc.
    Inventors: Seyed Ehsan Jalilian, John Hull, Daniel Huang, Adekunle Adeyemi
  • Patent number: 11054288
    Abstract: An optical fiber interrogator for interrogating optical fiber that includes fiber Bragg gratings (“FBGs”). The interrogator includes a light source operable to emit phase coherent light, amplitude modulation circuitry optically coupled to the light source and operable to generate pulses from the light, and control circuitry communicatively coupled to the amplitude modulation circuitry that is configured to perform a method for interrogating the optical fiber. The method includes generating a pair of light pulses by using the amplitude modulation circuitry to modulate light output by the light source without splitting the light.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: July 6, 2021
    Assignee: Hifi Engineering Inc.
    Inventors: Brian H. Moore, Walter Jeffrey Shakespeare, Phillip William Wallace, Viet Hoang, Tom Clement
  • Patent number: 11002620
    Abstract: A device and system for detecting dynamic strain. The device comprises a longitudinally extending carrier and an optical fiber embedded along an outer surface of a length of the carrier. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths. The system comprises the device and an interrogator comprising a laser source and a photodetector. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 11, 2021
    Assignee: Hifi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian
  • Publication number: 20210088188
    Abstract: Various embodiments provide a method of simulating a leak in a pipeline. The method includes: receiving a fluid stream from a fluid supply; and outputting the received fluid stream through an outlet such that the received fluid stream hits an outer surface of the pipeline at a location opposite the outlet such that a vibration is caused in the pipeline. Some other embodiments provide a corresponding system for simulating a leak in a pipeline, and a corresponding outlet for coupling a conduit to a pipeline.
    Type: Application
    Filed: July 6, 2020
    Publication date: March 25, 2021
    Applicant: Hifi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian, Oleksiy Pletnyov
  • Patent number: 10859212
    Abstract: Methods, systems, and techniques for determining whether an acoustic event has occurred along a fluid conduit having acoustic sensors positioned therealong. The method uses a processor to, for each of the sensors, determine a predicted acoustic signal using one or more past acoustic signals measured prior to measuring a measured acoustic signal using the sensor; determine a prediction error between the measured acoustic signal and the predicted acoustic signal; from the prediction error, determine a power estimate of an acoustic source located along a longitudinal segment of the fluid conduit overlapping the sensor; and determine whether the power estimate of the acoustic source exceeds an event threshold for the sensor. When the power estimate of at least one of the acoustic sources exceeds the event threshold, the processor attributes the acoustic event to one of the sensors for which the power estimate of the acoustic source exceeds the event threshold.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 8, 2020
    Assignee: Hifi Engineering Inc.
    Inventors: Seyed Ehsan Jalilian, Arne Dankers, David Westwick
  • Patent number: 10838162
    Abstract: There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to-end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: November 17, 2020
    Assignee: Hifi Engineering Inc.
    Inventors: John Hull, Neil Gulewicz, Robert Sokolowski, Oleksiy Pletnyov, Souheil Merhi, Philip Cheuk, Seyed Ehsan Jalilian
  • Patent number: 10746208
    Abstract: A method for non-intrusive pipeline testing involves constructing the pipeline at a construction location that is above ground, affixing an optical fiber along a surface of a length of the pipeline that is at the construction location, measuring dynamic strain experienced by the length of the pipeline by performing optical interferometry using the optical fiber, and moving the length of the pipeline from the construction location to a different installation location. The optical fiber includes at least one pair of fiber Bragg gratings (“FBGs”) tuned to reflect substantially identical wavelengths with a segment of the optical fiber extending between the FBGs.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: August 18, 2020
    Assignee: Hifi Engineering Inc.
    Inventors: Derek Logan, John Hull, Seyed Ehsan Jalilian
  • Publication number: 20200249107
    Abstract: A device and system for detecting dynamic strain. The device comprises a longitudinally extending carrier and an optical fiber embedded along an outer surface of a length of the carrier. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths. The system comprises the device and an interrogator comprising a laser source and a photodetector. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
    Type: Application
    Filed: November 8, 2019
    Publication date: August 6, 2020
    Applicant: Hifi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian
  • Patent number: 10725174
    Abstract: Methods and systems for estimating a distance between an acoustic sensor and an acoustic reflector in a conduit are disclosed. One such method includes using the acoustic sensor to measure a combined acoustic signal that comprises an originating acoustic signal propagating along the conduit and an echo signal. The echo signal is generated by the originating acoustic signal reflecting off the acoustic reflector after propagating past the acoustic sensor. A frequency domain representation of the combined acoustic signal is determined and the echo signal is identified by identifying in the frequency domain representation periodic oscillations having a peak-to-peak difference between 0.75 Hz and 1500 Hz. The distance between the acoustic sensor and the acoustic reflector is determined from the velocity of the echo signal and a time required for the echo signal to propagate between the acoustic sensor and the acoustic reflector.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: July 28, 2020
    Assignee: Hifi Engineering Inc.
    Inventors: Seyed Ehsan Jalilian, Arne Dankers
  • Patent number: 10704740
    Abstract: Various embodiments provide a method of simulating a leak in a pipeline. The method includes: receiving a fluid stream from a fluid supply; and outputting the received fluid stream through an outlet such that the received fluid stream hits an outer surface of the pipeline at a location opposite the outlet such that a vibration is caused in the pipeline. Some other embodiments provide a corresponding system for simulating a leak in a pipeline, and a corresponding outlet for coupling a conduit to a pipeline.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: July 7, 2020
    Assignee: Hifi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian, Oleksiy Pletnyov
  • Publication number: 20200200526
    Abstract: Methods, systems, and techniques for determining whether an event has occurred from dynamic strain measurements involve determining, using a processor, at least one event parameter from a signal representing the dynamic strain measurements, and then having the processor use the at least one event parameter to determine whether the event has occurred. The at least one event parameter is any one or more of a measure of magnitude of the signal, frequency centroid of the signal, filtered baseline of the signal, harmonic power of the signal, and time-integrated spectrum flux of the signal.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Applicant: Hifi Engineering Inc.
    Inventors: Seyed Ehsan Jalilian, John Hull, Daniel Huang, Adekunle Adeyemi
  • Patent number: 10584960
    Abstract: Methods, systems, and techniques for determining whether an event has occurred from dynamic strain measurements involve determining, using a processor, at least one event parameter from a signal representing the dynamic strain measurements, and then having the processor use the at least one event parameter to determine whether the event has occurred. The at least one event parameter is any one or more of a measure of magnitude of the signal, frequency centroid of the signal, filtered baseline of the signal, harmonic power of the signal, and time-integrated spectrum flux of the signal.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: March 10, 2020
    Assignee: Hifi Engineering Inc.
    Inventors: Seyed Ehsan Jalilian, John Hull, Daniel Huang, Adekunle Adeyemi
  • Publication number: 20190346295
    Abstract: An optical fiber interrogator for interrogating optical fiber that includes fiber Bragg gratings (“FBGs”). The interrogator includes a light source operable to emit phase coherent light, amplitude modulation circuitry optically coupled to the light source and operable to generate pulses from the light, and control circuitry communicatively coupled to the amplitude modulation circuitry that is configured to perform a method for interrogating the optical fiber. The method includes generating a pair of light pulses by using the amplitude modulation circuitry to modulate light output by the light source without splitting the light.
    Type: Application
    Filed: July 26, 2019
    Publication date: November 14, 2019
    Applicant: Hifi Engineering Inc.
    Inventors: Brian H. Moore, Walter Jeffrey Shakespeare, Phillip William Wallace, Viet Hoang, Tom Clement
  • Patent number: 10473541
    Abstract: A device and system for detecting dynamic strain. The device comprises a longitudinally extending carrier and an optical fiber embedded along an outer surface of a length of the carrier. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths. The system comprises the device and an interrogator comprising a laser source and a photodetector. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
    Type: Grant
    Filed: July 4, 2014
    Date of Patent: November 12, 2019
    Assignee: Hifi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian
  • Publication number: 20190339145
    Abstract: A system and method for detecting dynamic strain of a housing. The system includes an optical fiber linearly affixed along a surface of a length of the housing and an interrogator comprising a laser source and a photodetector. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths with a segment of the optical fiber extending between the FBGs. The segment of the optical fiber is linearly affixed along the surface of the housing. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
    Type: Application
    Filed: February 8, 2019
    Publication date: November 7, 2019
    Applicant: Hifi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian
  • Publication number: 20190331513
    Abstract: There is provided a method of estimating flowrate in a pipeline based on acoustic behaviour of the pipe. First acoustic data is measured from the pipeline. A flowrate of the fluid in the pipeline is then estimated. The estimation is based on the first acoustic data and based on a correlation established between second acoustic data and corresponding flowrate data from an experimental pipeline. The correlation is established by a machine learning process (which may include the use of an artificial neural network, such as an autoencoder). The second acoustic data and corresponding flowrate data are used as inputs to the machine learning process.
    Type: Application
    Filed: June 14, 2017
    Publication date: October 31, 2019
    Applicant: Hifi Engineering Inc.
    Inventors: Seyed Ehsan Jalilian, Dongliang Huang, Henry Leung, King Fai Ma
  • Patent number: 10428644
    Abstract: A sound baffle device for use with an acoustic sensor deployed in a housing by a deployment line comprises a radially extending baffle plate and an affixing mechanism for affixing the baffle plate to the deployment line. The baffle plate is configured to reduce acoustic transmission between a first zone of the housing on one side of the baffle plate and a second zone of the housing on an opposite side of the baffle plate.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: October 1, 2019
    Assignee: Hifi Engineering Inc.
    Inventors: John Hull, Neil Gulewicz, Seyed Ehsan Jalilian
  • Patent number: 10422365
    Abstract: A clamp for clamping optical fiber to a tube. The clamp has a body portion coupled at one end to a first arm and at an opposing end to a second arm, and a resilient portion to permit the clamp to elastically deform from a closed state in which the clamp is fastened around the tube to an open state in which the clamp is radially moveable off the tube. At least one of the body portion, the first arm and the second arm has a clamping surface to clamp a portion of the optical fiber against the tube when the clamp is fastened around the tube, and a clamping mechanism operable to extend at least part of the clamping surface towards the tube when the clamp is secured to the tube to increase a clamping force applied by the clamping surface.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: September 24, 2019
    Assignee: Hifi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian, Derek Logan
  • Patent number: 10416005
    Abstract: An optical fiber interrogator for interrogating optical fiber that includes fiber Bragg gratings (“FBGs”). The interrogator includes a light source operable to emit phase coherent light, amplitude modulation circuitry optically coupled to the light source and operable to generate pulses from the light, and control circuitry communicatively coupled to the amplitude modulation circuitry that is configured to perform a method for interrogating the optical fiber. The method includes generating a pair of light pulses by using the amplitude modulation circuitry to modulate light output by the light source without splitting the light.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: September 17, 2019
    Assignee: Hifi Engineering Inc.
    Inventors: Brian H. Moore, Walter Jeffrey Shakespeare, Phillip William Wallace, Viet Hoang, Tom Clement
  • Publication number: 20190212212
    Abstract: Described are methods and systems using optical fiber interferometry to sense interference causing events in a region of interest and differentiate between a strain event and a thermal event. Other methods and systems relate to the use of optical fiber interferometry for determining temperature offset in a region of interest and using the determined temperature offset for determining temperature in the region of interest.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Applicant: Hifi Engineering Inc.
    Inventors: John Hull, Seyed Ehsan Jalilian