Patents Assigned to HIGHLAND FLUID TECHNOLOGY, LTD.
  • Patent number: 10427117
    Abstract: A method is described of mixing fluid materials, including solids and gases. The materials to be mixed are introduced between two cylindrical rotors mounted in parallel on a motorized shaft. The rotors have arrays of cavities on their cylindrical surfaces and rotate within close proximity to the interior of a cylindrical shell. Passage of the fluid between the rotating rotors and the interior surface of the cylindrical shell causes cavitation, which mixes the materials. The mixture is passed to outlets on the far sides of the rotors from the inlet. Apparatus is described for extending the flow path of the materials and thus increasing exposure to the cavitation process.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: October 1, 2019
    Assignee: Highland Fluid Technology, Ltd.
    Inventor: Kevin Smith
  • Publication number: 20190176108
    Abstract: A cavitation device is supplied by a disc pump with fluids for mixing. A cavitation rotor, having an array of cavities on its cylindrical surface, is fixed to a shaft for rotation by a motor. The disc pump and the cavitation device are beneficially in the same housing. At least one disc is spaced from and attached to the rotor near the inlet end of the cylindrical housing, so it will rotate with the rotor. A central hole in the (at least one) disc permits fluid to enter the space between the disc and the rotor; it is flung toward the peripheral space between the rotor and the cylindrical housing, where it is subjected to cavitation, and then passed to an outlet. The shaft may pass through one or both of the end walls of the cylindrical housing. The cavitation pump is especially useful for mixing oil field fluids.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 13, 2019
    Applicant: Highland Fluid Technology, Ltd.
    Inventors: Kevin W. Smith, Jeff Fair
  • Publication number: 20190127623
    Abstract: Heavy fluids are made from calcium bromide and at least one hydrogen bond donor such as a low molecular weight polyol or an organic acid. The combination of a hydrogen bond donor and calcium bromide as a hydrogen bond acceptor in an appropriate molar ratio forms a higher density clear completion fluid at a low temperature not otherwise obtainable with heavy aqueous solutions of calcium bromide such as are used in oilfield wells. A method of making the fluid comprises mixing calcium bromide with the polyol(s) in the presence of water and then reducing the water content, thus forming a heavy fluid. A crystallization inhibitor such as nitrilitriacetamide or a particulate silicate is included in the formulation. When the heavy fluid “freezes,” its physical form is somewhat amorphous and pumpable rather than crystalline. The heavy fluid is useful as a drilling fluid as well as a completion fluid and for other purposes in oil recovery processes where extreme density is beneficial.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 2, 2019
    Applicant: Highland Fluid Technology, Ltd.
    Inventor: Kevin Smith
  • Patent number: 10258944
    Abstract: A cavitation device is supplied by a disc pump with fluids for mixing. A cavitation rotor, having an array of cavities on its cylindrical surface, is fixed to a shaft for rotation by a motor. The disc pump and the cavitation device are beneficially in the same housing. At least one disc is spaced from and attached to the rotor near the inlet end of the cylindrical housing, so it will rotate with the rotor. A central hole in the (at least one) disc permits fluid to enter the space between the disc and the rotor; it is flung toward the peripheral space between the rotor and the cylindrical housing, where it is subjected to cavitation, and then passed to an outlet. The shaft may pass through one or both of the end walls of the cylindrical housing. The cavitation pump is especially useful for mixing oil field fluids.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: April 16, 2019
    Assignee: Highland Fluid Technology, Ltd.
    Inventors: Kevin W. Smith, Jeff Fair
  • Publication number: 20190031793
    Abstract: Polyacrylamides, guar gum (sometimes “guar”), xanthan gum, carboxymethylcellulose, hydroxyethylcellulose, and other water-soluble polymers are dissolved and hydrated in aqueous solutions, including especially recycled drilling, fracturing, and other oilfield fluids having significant salt contents, by passing the water-soluble polymer together with the aqueous medium to a cavitation device including an integrated disc pump. The integration of a disc pump with the cavitation device reduces the risk of gumming by applying a negative pressure at the feed point. The ability to use water-soluble polymers with the salty recycled oilfield fluids has significant environmental benefits, namely (1) fresh water is not needed, (2) disposal of the environmentally undesirable returned fluids is not needed, (3) difficultly degradable synthetic polymers may not be needed, and, in particular, (4) the enhanced ability to use guar, which, being a natural product, is biodegradable, is environmentally favored.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 31, 2019
    Applicant: Highland Fluid Technology, Ltd.
    Inventor: Kevin W. Smith
  • Publication number: 20180001284
    Abstract: A method is described of mixing fluid materials, including solids and gases. The materials to be mixed are introduced between two cylindrical rotors mounted in parallel on a motorized shaft. The rotors have arrays of cavities on their cylindrical surfaces and rotate within close proximity to the interior of a cylindrical shell. Passage of the fluid between the rotating rotors and the interior surface of the cylindrical shell causes cavitation, which mixes the materials. The mixture is passed to outlets on the far sides of the rotors from the inlet. Apparatus is described for extending the flow path of the materials and thus increasing exposure to the cavitation process.
    Type: Application
    Filed: September 20, 2017
    Publication date: January 4, 2018
    Applicant: Highland Fluid Technology, Ltd.
    Inventor: Kevin Smith
  • Patent number: 9827540
    Abstract: A method is described of mixing fluid materials, including solids and gases. The materials to be mixed are introduced between two cylindrical rotors mounted in parallel on a motorized shaft. The rotors have arrays of cavities on their cylindrical surfaces and rotate within close proximity to the interior of a cylindrical shell. Passage of the fluid between the rotating rotors and the interior surface of the cylindrical shell causes cavitation, which mixes the materials. The mixture is passed to outlets on the far sides of the rotors from the inlet. Apparatus is described for extending the flow path of the materials and thus increasing exposure to the cavitation process.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: November 28, 2017
    Assignee: Highland Fluid Technology, Ltd.
    Inventor: Kevin Smith
  • Patent number: 9789452
    Abstract: A method is described of mixing fluid materials, including solids and gases. The materials to be mixed are introduced between two cylindrical rotors mounted in parallel on a motorized shaft. The rotors have arrays of cavities on their cylindrical surfaces and rotate within close proximity to the interior of a cylindrical shell. Passage of the fluid between the rotating rotors and the interior surface of the cylindrical shell causes cavitation, which mixes the materials. The mixture is passed to outlets on the far sides of the rotors from the inlet. Apparatus is described for extending the flow path of the materials and thus increasing exposure to the cavitation process.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: October 17, 2017
    Assignee: Highland Fluid Technology, Ltd.
    Inventor: Kevin Smith
  • Publication number: 20170274333
    Abstract: Viscosity and other properties are determined at desired temperatures in drilling mud and other fluids by using a versatile cavitation device which, operating in the cavitation mode, mixes and heats the fluid to a specified temperature, and, operating in the shear mode, acts as a spindle for application of Couette principles to determine viscosity as a function of shear stress and shear rate. The invention obviates the practice of adjusting rheology of a drilling fluid by passing it through the drill bit. Drilling fluid may be managed by a “straight-through” method to the well, or by placing the cavitation device in a loop which isolates an aliquot of known volume and circulating the fluid through the loop including the cavitation device.
    Type: Application
    Filed: March 23, 2017
    Publication date: September 28, 2017
    Applicant: Highland Fluid Technology, Ltd.
    Inventor: Kevin W. Smith
  • Patent number: 9718002
    Abstract: Used water-in-oil emulsified drilling muds are prepared for reuse by removing excess water. The excess water is removed by passing the used mud through a cavitation device, under controlled conditions, along with injected air. While the emulsion is heated in the cavitation device, the air is finely dispersed in it, so is able to absorb water evaporated from the discrete, discontinuous phase aqueous droplets in the emulsion. A mixture of incoming and aerated emulsion is maintained at an optimal temperature in a process tank while a steady state continuous process is controlled to utilize the heat input, after compensating for radiant heat losses and other system losses, substantially exclusively for the evaporation of water in the emulsion. The process is applicable to any water-in-oil emulsion.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: August 1, 2017
    Assignee: Highland Fluid Technology, Ltd.
    Inventors: Kevin Smith, Alan Rossiter
  • Publication number: 20160339400
    Abstract: An improved cavitation mixing and heating device employs an inlet directed toward the vertex of a conical or similar flow-directing element. The flow patterns of the fluid material to be mixed and heated are designed to preheat, spread, and create turbulent flow mixing of the fluid before it enters the cavitation zone, using heat generated in the cavitation zone that is conducted through the body of the cavitation rotor. The functions of the axially oriented inlet and flow directing element are assisted by a cantilever construction to alleviate stress on the bearings.
    Type: Application
    Filed: July 28, 2016
    Publication date: November 24, 2016
    Applicant: Highland Fluid Technology, Ltd.
    Inventors: Kevin W. Smith, Jeff Fair
  • Publication number: 20160096122
    Abstract: Used water-in-oil emulsified drilling muds are prepared for reuse by removing excess water. The excess water is removed by passing the used mud through a cavitation device, under controlled conditions, along with injected air. While the emulsion is heated in the cavitation device, the air is finely dispersed in it, so is able to absorb water evaporated from the discrete, discontinuous phase aqueous droplets in the emulsion. A mixture of incoming and aerated emulsion is maintained at an optimal temperature in a process tank while a steady state continuous process is controlled to utilize the heat input, after compensating for radiant heat losses and other system losses, substantially exclusively for the evaporation of water in the emulsion. The process is applicable to any water-in-oil emulsion.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 7, 2016
    Applicant: Highland Fluid Technology, Ltd.
    Inventors: Kevin Smith, Alan Rossiter
  • Publication number: 20150328604
    Abstract: A method is described of mixing fluid materials, including solids and gases. The materials to be mixed are introduced between two cylindrical rotors mounted in parallel on a motorized shaft. The rotors have arrays of cavities on their cylindrical surfaces and rotate within close proximity to the interior of a cylindrical shell. Passage of the fluid between the rotating rotors and the interior surface of the cylindrical shell causes cavitation, which mixes the materials. The mixture is passed to outlets on the far sides of the rotors from the inlet. Apparatus is described for extending the flow path of the materials and thus increasing exposure to the cavitation process.
    Type: Application
    Filed: April 21, 2015
    Publication date: November 19, 2015
    Applicant: HIGHLAND FLUID TECHNOLOGY, LTD.
    Inventor: Kevin Smith
  • Publication number: 20150328603
    Abstract: A cavitation device is supplied by a disc pump with fluids for mixing. A cavitation rotor, having an array of cavities on its cylindrical surface, is fixed to a shaft for rotation by a motor. The disc pump and the cavitation device are beneficially in the same housing. At least one disc is spaced from and attached to the rotor near the inlet end of the cylindrical housing, so it will rotate with the rotor. A central hole in the (at least one) disc permits fluid to enter the space between the disc and the rotor; it is flung toward the peripheral space between the rotor and the cylindrical housing, where it is subjected to cavitation, and then passed to an outlet. The shaft may pass through one or both of the end walls of the cylindrical housing. The cavitation pump is especially useful for mixing oil field fluids.
    Type: Application
    Filed: May 18, 2015
    Publication date: November 19, 2015
    Applicant: HIGHLAND FLUID TECHNOLOGY, LTD.
    Inventors: Kevin W. Smith, Jeff Fair