Patents Assigned to Historx, Inc.
  • Patent number: 8878983
    Abstract: The invention relates to a system for automatically adjusting an exposure time to improve or otherwise optimize a dynamic range of a digital image. The system includes a camera configured to capture an image of a subject within the field of view at a first exposure time. The captured image is composed of multiple pixels, with each pixel having a respective intensity value. The system further includes a shutter or suitable control configured to control an exposure time of the camera. A controller configured to carryout the following steps including: (a) querying a frequency distribution of pixel intensity values; (b) determining an effective “center of mass” of such a distribution, or histogram, to determine an adjusted exposure time; and (c) capturing a second image of the subject at the adjusted exposure time thereby obtaining an image with an improved or optimal dynamic range.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 4, 2014
    Assignee: HistoRx, Inc.
    Inventors: Jason Christiansen, Dylan M. Reilly, Brian Bourke-Martin, Mark Gustavson
  • Publication number: 20140142101
    Abstract: Interestingly, for prognosis, the significant biomarkers for Gefitinib-treated GBM patients (RTOG 0211) appeared to differ compared to historical, RT and non-Gefitinib-treated GBM patients. In Gefitinib-treated patients, those with higher levels of nuclear pAKT driven by PTEN loss, higher levels of nuclear pMAPK, and lower levels of nuclear pmTOR had significantly worse clinical outcomes. In contrast, in non-Gefitinib-treated patients, patients with PTEN-deficiency, and higher levels of EGFRvIII, total EGFR, IGFR1, NFkB and lower levels of nuclear Survivin appeared to have adverse clinical outcomes, highlighting the treatment-dependency of these biomarkers.
    Type: Application
    Filed: October 14, 2013
    Publication date: May 22, 2014
    Applicants: Radiation Therapy Oncology Group of the Americal College of Radiology, HistoRx, Inc.
    Inventors: Arnab CHAKRAVARTI, Robert Pinard, Donald Waldron, Agnes Ang, Marisa P. Dolled-Filhart, Annette Molinaro
  • Patent number: 8655037
    Abstract: The present invention relates generally to improved methods of defining areas or compartments within which biomarker expression is detected and quantified. In particular, the present invention relates to automated methods for delineating marker-defined compartments objectively with minimal operator intervention or decision making. The method provides for precise definition of tissue, cellular or subcellular compartments particularly in histological tissue sections in which to quantitatively analyzing protein expression.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: February 18, 2014
    Assignee: HistoRx, Inc.
    Inventors: Jason H. Christiansen, Robert Pinard, Mark Gustavson, Brian Bourke, Dylan M. Reilly, Gregory R. Tedeschi
  • Publication number: 20130344510
    Abstract: Disclosed herein are methods of identifying suitable patients for postoperative radiotherapy based on the discovery that the quantification of ER, beyond simple positive/negative characterization, can provide valuable predictive information for the treatment of cancer, specifically breast cancer, and more particularly may predict a group more likely to respond to RT and spare patients from a potentially harmful treatment. Furthermore, the true quantification of ER expression provides a continuous recurrence risk assessment for patients being treated with tamoxifen, and therefore the standardization of the data across sites and imaging platforms significantly reduces the misclassification of patients when compared to the current standard by which ER expression is determined.
    Type: Application
    Filed: December 2, 2011
    Publication date: December 26, 2013
    Applicants: UTI Limited Partnership, HistoRx, Inc.
    Inventors: Mark Gustavson, Jason Christiansen, Anthony Martin Magliocco
  • Patent number: 8605971
    Abstract: A system and method for automatically and quantitatively determining the optimal dilution of a reagent is provided. In one embodiment, a plurality of dilution sets are received, where each of the dilution sets consist of a different respective dilution value and a respective plurality of immunoassay staining intensity values. A respective dynamic range metric is determining for each of the plurality of dilution sets relative to the respective plurality immunoassay staining intensity values. Having found the respective dynamic range metric, a dilution set having the numerically optimal dynamic range metric is selected and the dilution value of that dilution set is selected as being representative of an optimal dilution level of the reagent for use in a quantitative immunoassay. In one embodiment, a system is provided with a microscope, an image sensor, and processor module configured determine an optimal dilution of a reagent for use in an quantitative immunoassay.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: December 10, 2013
    Assignee: HistoRx, Inc.
    Inventors: Robert Pinard, Gregory R. Tedeschi, Mark Gustavson
  • Publication number: 20130310268
    Abstract: Methods and apparatus for standardizing quantitative measurements from a microscope system. The process includes a calibration procedure whereby an image of a calibration slide is obtained through the optics of the microscope system. The calibration slide produces a standard response, which can be used to determine a machine intrinsic factor for the particular system. The machine intrinsic factor can be stored for later reference. In use, images are acquired of a target sample and of the excitation light source. The excitation light source sample is obtained using a calibration instrument configured to sample intensity. The calibration instrument has an associated correction factor to compensate its performance to a universally standardized calibration instrument. The machine intrinsic factor, sampled intensity, and calibration instrument correction factor are usable to compensate a quantitative measurement of the target sample in order to normalize the results for comparison with other microscope systems.
    Type: Application
    Filed: April 22, 2013
    Publication date: November 21, 2013
    Applicant: HistoRx, Inc.
    Inventor: HistoRx, Inc.
  • Patent number: 8557527
    Abstract: Interestingly, for prognosis, the significant biomarkers for Gefitinib-treated GBM patients (RTOG 0211) appeared to differ compared to historical, RT and non-Gefitinib-treated GBM patients. In Gefitinib-treated patients, those with higher levels of nuclear pAKT driven by PTEN loss, higher levels of nuclear pMAPK, and lower levels of nuclear pmTOR had significantly worse clinical outcomes. In contrast, in non-Gefitinib-treated patients, patients with PTEN-deficiency, and higher levels of EGFRvIII, total EGFR, IGFR1, NFkB and lower levels of nuclear Survivin appeared to have adverse clinical outcomes, highlighting the treatment-dependency of these biomarkers.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: October 15, 2013
    Assignees: HistoRx, Inc., Radiation Therapy Oncology Group of the American College of Radiology
    Inventors: Arnab Chakravarti, Robert Pinard, Agnes Ang, Marisa P. Dolled-Filhart, Annette Molinaro, Alpana Waldron
  • Publication number: 20130216111
    Abstract: The present invention relates generally to improved methods of defining areas or compartments within which biomarker expression is detected and quantified. In particular, the present invention relates to automated methods for delineating marker-defined compartments objectively with minimal operator intervention or decision making. The method provides for precise definition of tissue, cellular or subcellular compartments particularly in histological tissue sections in which to quantitatively analyzing protein expression.
    Type: Application
    Filed: December 14, 2012
    Publication date: August 22, 2013
    Applicant: HistoRx, Inc.
    Inventor: HistoRx, Inc.
  • Patent number: 8497080
    Abstract: The method of the invention pertains to determining signal transduction activity in a tissue section by immunohistochemistry techniques. The expression level of the receptor of interest is determined as well as the expression levels of one or more effector molecules of the receptor signal transduction pathway. Furthermore a combined ratio of expression levels of effector molecules in subcellular compartments with the receptor expression was found to have prognostic significance.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: July 30, 2013
    Assignees: HistoRx, Inc., Yale University
    Inventors: Mark Gustavson, Jennifer Giltnane, Marisa P. Dolled-Filhart, Robert L. Camp, David L. Rimm
  • Publication number: 20130143763
    Abstract: The method of the invention pertains to determining signal transduction activity in a tissue section by immunohistochemistry techniques. The expression level of the receptor of interest is determined as well as the expression levels of one or more effector molecules of the receptor signal transduction pathway. Furthermore a combined ratio of expression levels of effector molecules in subcellular compartments with the receptor expression was found to have prognostic significance.
    Type: Application
    Filed: February 5, 2013
    Publication date: June 6, 2013
    Applicants: YALE UNIVERSITY, HISTORX, INC.
    Inventors: HistoRx, Inc., Yale University
  • Patent number: 8427635
    Abstract: Methods and apparatus for standardizing quantitative measurements from a microscope system. The process includes a calibration procedure whereby an image of a calibration slide is obtained through the optics of the microscope system. The calibration slide produces a standard response, which can be used to determine a machine intrinsic factor for the particular system. The machine intrinsic factor can be stored for later reference. In use, images are acquired of a target sample and of the excitation light source. The excitation light source sample is obtained using a calibration instrument configured to sample intensity. The calibration instrument has an associated correction factor to compensate its performance to a universally standardized calibration instrument. The machine intrinsic factor, sampled intensity, and calibration instrument correction factor are usable to compensate a quantitative measurement of the target sample in order to normalize the results for comparison with other microscope systems.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: April 23, 2013
    Assignee: HistoRx, Inc.
    Inventors: Jason Christiansen, Robert Pinard, Maciej P. Zerkowski, Gregory R. Tedeschi
  • Patent number: 8417015
    Abstract: A method and system for automatically evaluating quality of a slide-mounted tissue sample includes receiving a digital image of a magnified portion of the slide-mounted tissue sample. At least one quantitative quality indicator is automatically determined for at least one of the samples, and the digital image of the magnified portion of the sample. Each of the quantitative quality indicators is automatically compared to a respective minimum acceptable quality threshold. The quantitative quality indicators and associated quality thresholds are selected for suitability with an automated quantitative immunoassay. Failure of one or more of the quantitative quality indicators to meet its respective minimum acceptable quality threshold suggests that the sample is unsuitable for subsequent automated pathological evaluation.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: April 9, 2013
    Assignee: HistoRx, Inc.
    Inventors: Robert Pinard, Gregory R. Tedeschi, Christine Williams, Dongxiao Wang
  • Patent number: 8367351
    Abstract: The method of the invention pertains to determining the signal transduction activity in a tissue section by immunohistochemistry techniques. The expression level of the receptor of interest is determined as well as the expression levels of one or more effector molecules of the receptor signal transduction pathway. Furthermore a combined ratio of expression levels of effector molecules in subcellular compartments with the receptor expression was found to have prognostic significance.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: February 5, 2013
    Assignees: Historx, Inc., Yale University
    Inventors: Mark Gustavson, Jennifer Giltnane, Marisa P. Dolled-Filhart, Robert L. Camp, David L. Rimm
  • Patent number: 8335360
    Abstract: The present invention relates generally to improved methods of defining areas or compartments within which biomarker expression is detected and quantified. In particular, the present invention relates to automated methods for delineating marker-defined compartments objectively with minimal operator intervention or decision making. The method provides for precise definition of tissue, cellular or subcellular compartments particularly in histological tissue sections in which to quantitatively analyzing protein expression.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: December 18, 2012
    Assignee: Historx, Inc.
    Inventors: Jason H. Christiansen, Robert Pinard, Mark Gustavson, Brian Bourke, Dylan M. Reilly, Gregory R. Tedeschi
  • Patent number: 8314931
    Abstract: Methods and apparatus for standardizing quantitative measurements from a microscope system. The process includes a calibration procedure whereby an image of a calibration slide is obtained through the optics of the microscope system. The calibration slide produces a standard response, which can be used to determine a machine intrinsic factor for the particular system. The machine intrinsic factor can be stored for later reference. In use, images are acquired of a target sample and of the excitation light source. The excitation light source sample is obtained using a calibration instrument configured to sample intensity. The calibration instrument has an associated correction factor to compensate its performance to a universally standardized calibration instrument. The machine intrinsic factor, sampled intensity, and calibration instrument correction factor are usable to compensate a quantitative measurement of the target sample in order to normalize the results for comparison with other microscope systems.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 20, 2012
    Assignee: HistoRx, Inc.
    Inventors: Jason Christiansen, Robert Pinard, Maciej P. Zerkowski, Gregory R. Tedeschi
  • Patent number: 8160348
    Abstract: A method and system for automatically evaluating quality of a slide-mounted tissue sample includes receiving a digital image of a magnified portion of the slide-mounted tissue sample. At least one quantitative quality indicator is automatically determined for at least one of the samples, and the digital image of the magnified portion of the sample. Each of the quantitative quality indicators is automatically compared to a respective minimum acceptable quality threshold. The quantitative quality indicators and associated quality thresholds are selected for suitability with an automated quantitative immunoassay. Failure of one or more of the quantitative quality indicators to meet its respective minimum acceptable quality threshold suggests that the sample is unsuitable for subsequent automated pathological evaluation.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: April 17, 2012
    Assignee: HistoRx, Inc.
    Inventors: Robert Pinard, Gregory R. Tedeschi, Christine Williams, Dongxiao Wang
  • Patent number: 8120768
    Abstract: Methods and apparatus for standardizing quantitative measurements from a microscope system. The process includes a calibration procedure whereby an image of a calibration slide is obtained through the optics of the microscope system. The calibration slide produces a standard response, which can be used to determine a machine intrinsic factor for the particular system. The machine intrinsic factor can be stored for later reference. In use, images are acquired of a target sample and of the excitation light source. The excitation light source sample is obtained using a calibration instrument configured to sample intensity. The calibration instrument has an associated correction factor to compensate its performance to a universally standardized calibration instrument. The machine intrinsic factor, sampled intensity, and calibration instrument correction factor are usable to compensate a quantitative measurement of the target sample in order to normalize the results for comparison with other microscope systems.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: February 21, 2012
    Assignee: HistoRx, Inc.
    Inventors: Jason Christiansen, Robert Pinard, Maciej P. Zerkowski, Gregory R. Tedeschi
  • Patent number: 8121365
    Abstract: A system and method for automatically and quantitatively determining the optimal dilution of a reagent is provided. In one embodiment of the claimed method, a plurality of dilution sets are received, where each of the dilution sets consist of a different respective dilution value and a respective plurality of immunoassay staining intensity values. A respective dynamic range metric is determining for each of the plurality of dilution sets relative to the respective plurality immunoassay staining intensity values. Having found the respective dynamic range metric, a dilution set having the numerically optimal dynamic range metric is selected and the dilution value of that dilution set is selected as being representative of an optimal dilution level of the reagent for use in a quantitative immunoassay. In one embodiment, a system is provided with a microscope, an image sensor, and processor module configured determine an optimal dilution of a reagent for use in an quantitative immunoassay.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: February 21, 2012
    Assignee: HistoRx, Inc.
    Inventors: Robert Pinard, Gregory R. Tedeschi, Mark Gustavson
  • Patent number: 8027030
    Abstract: Methods and apparatus for standardizing quantitative measurements from a microscope system. The process includes a calibration procedure whereby an image of a calibration slide is obtained through the optics of the microscope system. The calibration slide produces a standard response, which can be used to determine a machine intrinsic factor for the particular system. The machine intrinsic factor can be stored for later reference. In use, images are acquired of a target sample and of the excitation light source. The excitation light source sample is obtained using a calibration instrument configured to sample intensity. The calibration instrument has an associated correction factor to compensate its performance to a universally standardized calibration instrument. The machine intrinsic factor, sampled intensity, and calibration instrument correction factor are usable to compensate a quantitative measurement of the target sample in order to normalize the results for comparison with other microscope systems.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: September 27, 2011
    Assignee: HistoRx, Inc.
    Inventors: Jason Christiansen, Robert Pinard, Maciej P. Zerkowski, Gregory R. Tedeschi
  • Patent number: 7978258
    Abstract: The invention relates to a system for automatically adjusting an exposure time to improve or otherwise optimize a dynamic range of a digital image. The system includes a camera configured to capture an image of a subject within the field of view at a first exposure time. The captured image is composed of multiple pixels, with each pixel having a respective intensity value. The system further includes a shutter or suitable control configured to control an exposure time of the camera. A controller configured to carryout the following steps including: (a) querying a frequency distribution of pixel intensity values; (b) determining an effective “center of mass” of such a distribution, or histogram, to determine an adjusted exposure time; and (c) capturing a second image of the subject at the adjusted exposure time thereby obtaining an image with an improved or optimal dynamic range.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 12, 2011
    Assignee: HistoRx, Inc.
    Inventors: Jason Christiansen, Dylan M. Reilly, Brian Bourke-Martin, Mark Gustavson