Patents Assigned to HLT, Inc.
  • Patent number: 9439760
    Abstract: A stentless support structure capable of being at least partly assembled in situ. The support structure comprises a braided tube that is very flexible and, when elongated, becomes very long and very small in diameter, thereby being capable of placement within a small diameter catheter. The support structure is preferably constructed of one or more thin strands of a super-elastic or shape memory material such as Nitinol. When released from the catheter, the support structure folds itself into a longitudinally compact configuration. The support structure thus gains significant strength as the number of folds increase. This radial strength obviates the need for a support stent. The support structure may include attachment points for a prosthetic valve.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: September 13, 2016
    Assignee: HLT, Inc.
    Inventors: Gary A. Thill, Robert Foster Wilson, John P. Gainor, Christopher M. Banick
  • Publication number: 20160220358
    Abstract: An expandable delivery tool for aiding the deployment of a prosthesis device within a patient. The delivery tool has a generally elongated shape with a selectively expandable distal end region that flares outward in diameter. Once advanced percutaneously within a patient's vessel, the delivery device can help locate a target area, assist in deploying a prosthesis at a desired position and further expand the prosthesis after deployment.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Applicant: HLT, Inc.
    Inventors: Robert Foster Wilson, John Gainor
  • Publication number: 20160100941
    Abstract: A delivery device usable to deliver an inverting implant is provided that includes a positioning mechanism that automatically initiates the inversion process once a predetermined length of the implant has exited a delivery catheter. The positioning mechanism allows the implant to be safely and accurately deployed with reduced operator experience and in a greater variety of target locations.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 14, 2016
    Applicant: HLT, Inc.
    Inventors: Joseph Czyscon, Evan Leingang
  • Publication number: 20160095702
    Abstract: A stentless support structure capable of being at least partly assembled in situ. The support structure comprises a braided tube that is very flexible and, when elongated, becomes very long and very small in diameter, thereby being capable of placement within a small diameter catheter. The support structure is preferably constructed of one or more thin strands of a super-elastic or shape memory material such as Nitinol. When released from the catheter, the support structure folds itself into a longitudinally compact configuration. The support structure thus gains significant strength as the number of folds increase. This radial strength obviates the need for a support stent. The support structure may include attachment points for a prosthetic valve.
    Type: Application
    Filed: July 1, 2015
    Publication date: April 7, 2016
    Applicant: HLT, INC.
    Inventors: John Gainor, Gary A. Thill, Robert Foster Wilson, Christopher M. Banick
  • Publication number: 20160084282
    Abstract: A method of reducing the concentration of stress that occurs when joining two cylindrical component ends with a tube. Grooves are placed near the ends of the cylindrical components that alleviate the stress/strain felt by the cylindrical components when undergoing flex cycling.
    Type: Application
    Filed: March 14, 2014
    Publication date: March 24, 2016
    Applicant: HLT, Inc.
    Inventors: John P. Gainor, Todd J. Mortier
  • Patent number: 9271832
    Abstract: A delivery device usable to deliver an inverting implant is provided that includes a positioning mechanism that automatically initiates the inversion process once a predetermined length of the implant has exited a delivery catheter. The positioning mechanism allows the implant to be safely and accurately deployed with reduced operator experience and in a greater variety of target locations.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: March 1, 2016
    Assignee: HLT, Inc.
    Inventors: Dale K. Nelson, Joseph S Czyscon, John P. Gainor
  • Patent number: 9271831
    Abstract: A stentless support structure capable of being at least partly assembled in situ. The support structure comprises a braided tube that is very flexible and, when elongated, becomes very long and very small in diameter, thereby being capable of placement within a small diameter catheter. The support structure is preferably constructed of one or more thin strands of a super-elastic or shape memory material such as Nitinol. When released from the catheter, the support structure folds itself into a longitudinally compact configuration. The support structure thus gains significant strength as the number of folds increase. This radial strength obviates the need for a support stent. The support structure may include attachment points for a prosthetic valve.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: March 1, 2016
    Assignee: HLT, Inc.
    Inventors: Gary A. Thill, Robert Foster Wilson, John Gainor, Christopher M. Banick
  • Publication number: 20160051363
    Abstract: An intravascular cuff acts as a lining between a native vessel and an intravascular prosthetic device. During deployment, the ends of the cuff curl back upon themselves and are capable of trapping native tissue, such as valve leaflet tissue, between the ends. The cuff creates a seal between the vessel and the prosthetic, thereby preventing leakage around the prosthetic. The cuff also traps any embolic material dislodged from the vessel during expansion of the prosthetic.
    Type: Application
    Filed: October 30, 2015
    Publication date: February 25, 2016
    Applicant: HLT, INC.
    Inventors: Robert Foster Wilson, John P. Gainor
  • Patent number: 9180003
    Abstract: An intravascular cuff acts as a lining between a native vessel and an intravascular prosthetic device. During deployment, the ends of the cuff curl back upon themselves and are capable of trapping native tissue, such as valve leaflet tissue, between the ends. The cuff creates a seal between the vessel and the prosthetic, thereby preventing leakage around the prosthetic. The cuff also traps any embolic material dislodged from the vessel during expansion of the prosthetic.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: November 10, 2015
    Assignee: HLT, Inc.
    Inventors: Robert Foster Wilson, John P. Gainor
  • Patent number: 9180002
    Abstract: A stentless support structure capable of being at least partly assembled in situ. The support structure comprises a braided tube that is very flexible and, when elongated, becomes very long and very small in diameter, thereby being capable of placement within a small diameter catheter. The support structure is preferably constructed of one or more thin strands of a super-elastic or shape memory material such as Nitinol. When released from the catheter, the support structure folds itself into a longitudinally compact configuration. The support structure thus gains significant strength as the number of folds increase. This radial strength obviates the need for a support stent. The support structure may include attachment points for a prosthetic valve.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: November 10, 2015
    Assignee: HLT, Inc.
    Inventors: Gary A. Thill, Robert Foster Wilson, John Gainor, Christopher M. Banick
  • Patent number: 9168132
    Abstract: A stentless support structure capable of being at least partly assembled in situ. The support structure comprises a braided tube that is very flexible and, when elongated, becomes very long and very small in diameter, thereby being capable of placement within a small diameter catheter. The support structure is preferably constructed of one or more thin strands of a super-elastic or shape memory material such as Nitinol. When released from the catheter, the support structure folds itself into a longitudinally compact configuration. The support structure thus gains significant strength as the number of folds increase. This radial strength obviates the need for a support stent. The support structure may include attachment points for a prosthetic valve.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: October 27, 2015
    Assignee: HLT, Inc.
    Inventors: Gary A. Thill, Robert Foster Wilson, John P. Gainor, Christopher M. Banick
  • Patent number: 9089423
    Abstract: A stentless support structure capable of being at least partly assembled in situ. The support structure comprises a braided tube that is very flexible and, when elongated, becomes very long and very small in diameter, thereby being capable of placement within a small diameter catheter. The support structure is preferably constructed of one or more thin strands of a super-elastic or shape memory material such as Nitinol. When released from the catheter, the support structure folds itself into a longitudinally compact configuration. The support structure thus gains significant strength as the number of folds increase. This radial strength obviates the need for a support stent. The support structure may include attachment points for a prosthetic valve.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: July 28, 2015
    Assignee: HLT, Inc.
    Inventors: John Gainor, Gary A. Thill, Robert Foster Wilson, Christopher M. Banick
  • Patent number: 8974523
    Abstract: A stentless support structure capable of being at least partly assembled in situ. The support structure comprises a braided tube that is very flexible and, when elongated, becomes very long and very small in diameter, thereby being capable of placement within a small diameter catheter. The support structure is preferably constructed of one or more thin strands of a super-elastic or shape memory material such as Nitinol. When released from the catheter, the support structure folds itself into a longitudinally compact configuration. The support structure thus gains significant strength as the number of folds increase. This radial strength obviates the need for a support stent. The support structure may include attachment points for a prosthetic valve.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: March 10, 2015
    Assignee: HLT, Inc.
    Inventors: Gary A. Thill, Robert Foster Wilson, John Gainor, Christopher M. Banick
  • Publication number: 20140288639
    Abstract: A prosthetic valve assembly that includes a stent, a tissue sleeve and an anchoring mechanism. By loading the three components of the valve assembly into a delivery catheter in a series formation, such that no two components are located within each other, the size of the delivery catheter can be reduced.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: HLT, Inc.
    Inventor: John P. Gainor
  • Publication number: 20140276644
    Abstract: A catheter with an elastic reinforcement layer allows its catheter tube to expand from a native diameter to an expanded diameter. In this respect, a device or implant with a larger diameter than that of the catheter tube's native diameter size can be passed through the catheter without damage.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: HLT, Inc.
    Inventor: Dale K. Nelson
  • Publication number: 20140243961
    Abstract: A delivery device usable to deliver an inverting implant is provided that includes a positioning mechanism that automatically initiates the inversion process once a predetermined length of the implant has exited a delivery catheter. The positioning mechanism allows the implant to be safely and accurately deployed with reduced operator experience and in a greater variety of target locations.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: HLT, Inc.
    Inventors: Dale K. Nelson, John P. Gainor, Alan Carlson, Evan M. Leingang, Richard Thompson
  • Publication number: 20140243959
    Abstract: A delivery device usable to deliver an inverting implant is provided that includes a positioning mechanism that automatically initiates the inversion process once a predetermined length of the implant has exited a delivery catheter. The positioning mechanism allows the implant to be safely and accurately deployed with reduced operator experience and in a greater variety of target locations.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: HLT, INC.
    Inventors: Dale K. Nelson, Joseph S. Czyscon, John P. Gainor
  • Publication number: 20140243960
    Abstract: A delivery device usable to deliver an inverting implant is provided that includes a positioning mechanism that automatically initiates the inversion process once a predetermined length of the implant has exited a delivery catheter. The positioning mechanism allows the implant to be safely and accurately deployed with reduced operator experience and in a greater variety of target locations.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: HLT, Inc.
    Inventors: Joseph S. Czyscon, Evan M. Leingang, Robert Foster Wilson, John P. Gainor
  • Publication number: 20140243962
    Abstract: A delivery device usable to deliver an inverting implant is provided that includes a positioning mechanism that automatically initiates the inversion process once a predetermined length of the implant has exited a delivery catheter. The positioning mechanism allows the implant to be safely and accurately deployed with reduced operator experience and in a greater variety of target locations.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: HLT, Inc.
    Inventors: Robert Foster Wilson, Cassandra Svendsen, Dale K. Nelson, John P. Gainor
  • Publication number: 20140194980
    Abstract: A device and method for controlling commissural tip deflection of a prosthetic valve, thereby both preventing failure due to repeated movement and/or uneven loading of the commissural points and also improving coaptation of the valve leaflets, including connecting reinforcing material between the commissural points so a spring-like span is created across the points. The spanning material may be in the form of a ring that is lashed, sewn or otherwise connected to the commissural points. The reinforcing material may form curved segments between the commissural points that extend outwardly to form sinuses behind the leaflets of the prosthetic valve. The reinforcing material may also extend in an upstream direction to avoid interfering with blood flowing out of the prosthetic valve.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: HLT, Inc.
    Inventor: John Gainor