Abstract: A lighting system includes a plurality of control modules distributed on the AC power line for remote control of lights within a residential/office building structure. Each control module is hard-wired to an electrical load and is provided with a dimmer and up to four control switches and LEDs for status indication. Each control module has a data decoder, a switch and LED interface, a dimmer driver and processor with memory for independently processing and communicating data signals to the other control modules on the AC power line without the need for a central processor to coordinate the lighting control operation. Every control module is programmable through a programmable module and a PC. The system data downloaded to each control module includes a unique address, a system configuration file and a response file for evaluating system transmission commands. Each control switch may be programmed to control the hard-wired load or any other load in the system.
Abstract: A power line communication circuit comprises a rectifier connected to an a.c. power line utility source. The rectifier draws power from the a.c. power source and produces a low-frequency rectified d.c. voltage signal across its positive and negative output terminals with the negative output terminal being referenced as a circuit ground. The rectified d.c. voltage signal is received by a voltage-to-current converter connected to the positive output terminal of the rectifier. The voltage-to-current converter also receives a high-frequency a.c.-shaped communication input voltage signal from an external high-frequency a.c.-shaped communication signal generator. In response to the two input voltage signals, the voltage-to-current converter generates an output current which contains a low frequency d.c. component from the rectified d.c. input voltage signal and a high frequency a.c.-shaped component from the a.c-shaped high frequency communication input voltage signal. The high frequency a.c.
Abstract: A PWM switching power supply of the buck regulator type converts an unfiltered rectified d.c. input voltage into a regulated stepped down d.c. output voltage for use by load circuits. The power supply includes a PWM switching regulator which controls the duty cycle of an N-channel field effect transistor (FET) power switch which has its source connected to a Schottky flyback diode. The flyback diode is connected to an LC output filter which generates the stepped down output voltage. The PWM regulator includes a 555 timer operating in conjunction with an RC timing network in a modulated a stable mode. Timer 555 has an output lead electrically connected to the gate of the FET for switching the FET on/off in response to an output voltage modulating feedback input from a feedback path with the source of the FET serving as the “ground” for the PWM regulator.