Abstract: An electromagnetic valve uses a solenoid coil to produce a magnetic attraction of a cylindrical shell core against the action of a spring. A valve seat is constituted by a plate of a hard material arranged to cooperate with a circular ridge on an end of the core to obtain an hermetic seal therebetween. The plate is maintained against a bearing surface within a valve housing by a telescoping element located within the shell core and providing a sliding support surface for the shell core.
Abstract: A pneumatic valve uses a body made of a synthetic material with a plurality of internal fluid ducts opening onto a face of the body via respective orifices. A metal plate is arranged in contact with the aforesaid face and is provided with sockets aligned with respective ones of the duct orifices and each containing a tapped hole capable of receiving a threaded connecting pipe. Resilient O-rings are used to provide a fluid-tight seal between the sockets and the ducts.
Abstract: A solenoid valve includes a body (2,25) with an internal intake pipe (26) and an internal outlet pipe (27), a coil (4) and a movable stem (3), urged by a spring (10) toward a valve closed position. The stem (3) defines, with a seat (30), an annular sealing surface (22), surrounded by a groove (17) and by an annular flange (18). The flange defines with an annular counterpart (25) placed opposite, an annular damping surface (23). The groove (17) communicates with the outlet pipe (27) through a longitudinal slot (12) provided in the stem (3). The annular flange (18) is in a position near or in contact with the counterpart (25) when the valve is closed. During a closing of the valve, the liquid between the annular flange (18) and the counterpart (25) escapes radially through the groove (17) from the annular damping surface. This produces a braking effect on the stem (3), to reduce wear on the annular sealing surface (22).