Abstract: In an embodiment, a de-heading device for a coke drum includes an outer component that includes an inlet nozzle; and an inner component that includes a pipe elbow and an orifice, wherein the outer component is coupled to the inner component by an actuator, the actuator for shifting between two or more positions. In another embodiment, a method of de-heading a coke drum includes actuating an actuator, the actuator coupled to a de-heading device, wherein the de-heading device includes an outer component comprising an inlet nozzle; and an inner component comprising a pipe elbow and an orifice, wherein the outer component is coupled to the inner component by the actuator, the actuator for shifting between two or more positions; and either removing a material from a coke drum coupled to the de-heading device, or filling a coke drum coupled to the de-heading device with a material.
Abstract: A coke drum apparatus including: a cylindrical section; a cap connected to an upper end of the cylindrical section; a bottom, and a knuckle connecting the bottom and the cylindrical section. The cylindrical section includes a plurality of arcuate segments attached together by vertical welds. Each arcuate segment includes a plurality of arcuate plates attached together by circumferential welds. The circumferential welds of each arcuate segment are offset from the circumferential welds of each adjacent arcuate segment.
Abstract: A pressure vessel has a restraint structure for accommodating thermal cycling thereof, including: a body with a cylindrical section; a skirt connected to the body and having a foot; and a plurality of blocks disposed around the skirt adjacent to the foot. Each block is anchored to a support frame or foundation, and has a base and a flange. Each flange overlaps the foot, thereby vertically linking the blocks and the skirt. A radial clearance is formed between an outer surface of the foot and an inner surface of each base. A vertical clearance is formed between an upper surface of the foot and a lower surface of each flange.
Abstract: A pressure vessel has a restraint structure for accommodating thermal cycling thereof, including: a body with a cylindrical section; a skirt connected to the body and having a foot; and a plurality of blocks disposed around the skirt adjacent to the foot. Each block: is anchored to a support frame or foundation, and has a base and a flange. Each flange overlaps the foot, thereby vertically linking the blocks and the skirt. A radial clearance is formed between an outer surface of the foot and an inner surface of each base. A vertical clearance is formed between an upper surface of the foot and a lower surface of each flange.
Abstract: A pressure vessel includes: a body comprising a cylindrical section; and a skirt comprising a hip, a leg, and a restraint. The hip formed with or attached to the body and has a profile for receiving an upper portion of the leg. The profile is oversized relative to the leg upper portion, thereby defining a radial clearance between the hip and the leg to account for thermal cycling of the body. The restraint fastens the hip and the leg while allowing limited movement between the hip and the leg to account for the thermal cycling.
Abstract: A pressure vessel includes: a body comprising a cylindrical section; and a skirt comprising a hip, a leg, and a restraint. The hip formed with or attached to the body and has a profile for receiving an upper portion of the leg. The profile is oversized relative to the leg upper portion, thereby defining a radial clearance between the hip and the leg to account for thermal cycling of the body. The restraint fastens the hip and the leg while allowing limited movement between the hip and the leg to account for the thermal cycling.