Patents Assigned to HOWE INDUSTRIES, LLC
-
Patent number: 12120956Abstract: A thermoelectric converter including a thermoelectric generator and a radiation source. The thermoelectric generator includes a hot source, a cold source, n-type material, and p-type material. The radiation source emits ionizing radiation that increases electrical conductivity. Also detailed is a method of using radiation to reach high efficiency with a thermoelectric converter that includes providing a thermoelectric generator and a radiation source, with the thermoelectric generator including a hot source, a cold source, n-type material, and p-type material, and emitting ionizing radiation with the radiation source to increase the electrical conductivity which strips electrons in the n-type material, the p-type material, or both the n-type material and p-type material from their nuclei with the electrons then free to move within the material.Type: GrantFiled: October 9, 2023Date of Patent: October 15, 2024Assignee: HOWE INDUSTRIES LLCInventors: Troy Michael Howe, Steven Daniel Howe
-
Patent number: 12096692Abstract: A thermoelectric cooler including a thermoelectric junction and a radiation source. The thermoelectric cooler includes n-type material, p-type material, and an electrical power source. The radiation source emits ionizing radiation that increases electrical conductivity of the n and p type materials. Also detailed is a method of using radiation to reach high coefficient of performance (COP) values with a thermoelectric cooler that includes providing a thermoelectric cooler and a radiation source, with the thermoelectric cooler including an n-type material, p-type material, an electrical power source, and emitting ionizing radiation with the radiation source to increase the electrical conductivity which strips electrons from the n-type material, the p-type material, or both the n-type material and p-type material from their nuclei with the electrons then free to move within the material.Type: GrantFiled: October 13, 2022Date of Patent: September 17, 2024Assignee: HOWE INDUSTRIES LLCInventor: Troy Howe
-
Publication number: 20240290509Abstract: A customizable thin plate fuel form and reactor core therefor are disclosed. The thin plate fuel will comprise a fuel material embedded within a matrix material, with the entire unit having a coating. The thin plate fuel may be flat or curved and will have flow channels formed within at least the top surface of the fuel plate. The structure of the thin plate fuel will make it easier for coating with Tungsten or any other suitable material that will help contain any byproducts, prevent reactions with the working fluid, and potentially provide structural support to the thin plate fuel.Type: ApplicationFiled: January 22, 2024Publication date: August 29, 2024Applicant: HOWE INDUSTRIES, LLCInventors: Troy M. HOWE, Steven D. HOWE
-
Patent number: 11923098Abstract: A customizable thin plate fuel form and reactor core therefor are disclosed. The thin plate fuel will comprise a fuel material embedded within a matrix material, with the entire unit having a coating. The thin plate fuel may be flat or curved and will have flow channels formed within at least the top surface of the fuel plate. The structure of the thin plate fuel will make it easier for coating with Tungsten or any other suitable material that will help contain any byproducts, prevent reactions with the working fluid, and potentially provide structural support to the thin plate fuel.Type: GrantFiled: September 10, 2021Date of Patent: March 5, 2024Assignee: HOWE INDUSTRIES, LLCInventors: Troy M. Howe, Steven D. Howe
-
Publication number: 20240049599Abstract: A thermoelectric converter including a thermoelectric generator and a radiation source. The thermoelectric generator includes a hot source, a cold source, n-type material, and p-type material. The radiation source emits ionizing radiation that increases electrical conductivity. Also detailed is a method of using radiation to reach high efficiency with a thermoelectric converter that includes providing a thermoelectric generator and a radiation source, with the thermoelectric generator including a hot source, a cold source, n-type material, and p-type material, and emitting ionizing radiation with the radiation source to increase the electrical conductivity which strips electrons in the n-type material, the p-type material, or both the n-type material and p-type material from their nuclei with the electrons then free to move within the material.Type: ApplicationFiled: October 9, 2023Publication date: February 8, 2024Applicant: HOWE INDUSTRIES LLCInventors: Troy Michael Howe, Steven Daniel Howe
-
Publication number: 20230397498Abstract: A thermoelectric converter including a thermoelectric generator and a radiation source. The thermoelectric generator includes a hot source, a cold source, n-type material, and p-type material. The radiation source emits ionizing radiation that increases electrical conductivity. Also detailed is a method of using radiation to reach high efficiency with a thermoelectric converter that includes providing a thermoelectric generator and a radiation source, with the thermoelectric generator including a hot source, a cold source, n-type material, and p-type material, and emitting ionizing radiation with the radiation source to increase the electrical conductivity which strips electrons in the n-type material, the p-type material, or both the n-type material and p-type material from their nuclei with the electrons then free to move within the material.Type: ApplicationFiled: August 22, 2023Publication date: December 7, 2023Applicant: HOWE INDUSTRIES LLCInventors: Troy Michael Howe, Steven Daniel Howe
-
Patent number: 11793076Abstract: A thermoelectric converter including a thermoelectric generator and a radiation source. The thermoelectric generator includes a hot source, a cold source, n-type material, and p-type material. The radiation source emits ionizing radiation that increases electrical conductivity. Also detailed is a method of using radiation to reach high efficiency with a thermoelectric converter that includes providing a thermoelectric generator and a radiation source, with the thermoelectric generator including a hot source, a cold source, n-type material, and p-type material, and emitting ionizing radiation with the radiation source to increase the electrical conductivity which strips electrons in the n-type material, the p-type material, or both the n-type material and p-type material from their nuclei with the electrons then free to move within the material.Type: GrantFiled: March 10, 2021Date of Patent: October 17, 2023Assignee: HOWE INDUSTRIES LLCInventors: Troy Michael Howe, Steven Daniel Howe
-
Publication number: 20230064980Abstract: A thermoelectric cooler including a thermoelectric junction and a radiation source. The thermoelectric cooler includes n-type material, p-type material, and an electrical power source. The radiation source emits ionizing radiation that increases electrical conductivity of the n and p type materials. Also detailed is a method of using radiation to reach high coefficient of performance (COP) values with a thermoelectric cooler that includes providing a thermoelectric cooler and a radiation source, with the thermoelectric cooler including an n-type material, p-type material, an electrical power source, and emitting ionizing radiation with the radiation source to increase the electrical conductivity which strips electrons from the n-type material, the p-type material, or both the n-type material and p-type material from their nuclei with the electrons then free to move within the material.Type: ApplicationFiled: October 13, 2022Publication date: March 2, 2023Applicant: HOWE INDUSTRIES LLCInventor: Troy HOWE
-
Publication number: 20220263005Abstract: A thermoelectric cooler including a thermoelectric junction and a radiation source. The thermoelectric cooler includes n-type material, p-type material, and an electrical power source. The radiation source emits ionizing radiation that increases electrical conductivity of the n and p type materials. Also detailed is a method of using radiation to reach high coefficient of performance (COP) values with a thermoelectric cooler that includes providing a thermoelectric cooler and a radiation source, with the thermoelectric cooler including an n-type material, p-type material, an electrical power source, and emitting ionizing radiation with the radiation source to increase the electrical conductivity which strips electrons from the n-type material, the p-type material, or both the n-type material and p-type material from their nuclei with the electrons then free to move within the material.Type: ApplicationFiled: November 23, 2021Publication date: August 18, 2022Applicant: HOWE INDUSTRIES LLCInventor: TROY HOWE
-
Publication number: 20220097874Abstract: ThermaSatâ„¢ propulsion system uses water as a safe and non-explosive propellant, and which is unpressurized at liftoff. Utilizing solar thermal propulsion, the compact and efficient capacitor heats water to steam to produce high thrust and total impulse. The advanced optical system allows for the thermal capacitor to charge through solar power alone with no protruding concentrators or power draw from the main bus. Additional solar panels, body mounted to the ThermaSat, provide auxiliary heating of the thermal capacitor when not directly incident to sunlight to promote non-sun pointing operations.Type: ApplicationFiled: September 30, 2021Publication date: March 31, 2022Applicant: Howe Industries LLCInventors: Troy Michael HOWE, Steven Daniel HOWE, Jack R. MILLER
-
Publication number: 20220084696Abstract: A customizable thin plate fuel form and reactor core therefor are disclosed. The thin plate fuel will comprise a fuel material embedded within a matrix material, with the entire unit having a coating. The thin plate fuel may be flat or curved and will have flow channels formed within at least the top surface of the fuel plate. The structure of the thin plate fuel will make it easier for coating with Tungsten or any other suitable material that will help contain any byproducts, prevent reactions with the working fluid, and potentially provide structural support to the thin plate fuel.Type: ApplicationFiled: September 10, 2021Publication date: March 17, 2022Applicant: HOWE INDUSTRIES, LLCInventors: Troy M. Howe, Steven D. Howe
-
Publication number: 20220077371Abstract: A thermoelectric converter including a thermoelectric generator and a radiation source. The thermoelectric generator includes a hot source, a cold source, n-type material, and p-type material. The radiation source emits ionizing radiation that increases electrical conductivity. Also detailed is a method of using radiation to reach high efficiency with a thermoelectric converter that includes providing a thermoelectric generator and a radiation source, with the thermoelectric generator including a hot source, a cold source, n-type material, and p-type material, and emitting ionizing radiation with the radiation source to increase the electrical conductivity which strips electrons in the n-type material, the p-type material, or both the n-type material and p-type material from their nuclei with the electrons then free to move within the material.Type: ApplicationFiled: March 10, 2021Publication date: March 10, 2022Applicant: HOWE INDUSTRIES LLCInventors: Troy Michael Howe, Steven Daniel Howe
-
Patent number: 11139086Abstract: A customizable thin plate fuel form and reactor core therefor are disclosed. The thin plate fuel will comprise a fuel material embedded within a matrix material, with the entire unit having a coating. The thin plate fuel may be flat or curved and will have flow channels formed within at least the top surface of the fuel plate. The structure of the thin plate fuel will make it easier for coating with Tungsten or any other suitable material that will help contain any byproducts, prevent reactions with the working fluid, and potentially provide structural support to the thin plate fuel.Type: GrantFiled: December 7, 2017Date of Patent: October 5, 2021Assignee: HOWE INDUSTRIES, LLCInventors: Troy M. Howe, Steven D. Howe