Patents Assigned to Howmedica
  • Publication number: 20190117232
    Abstract: Arthroplasty jigs and related methods are disclosed. Some of the arthroplasty jigs may comprise a jig body that is configured to align with a surface of a bone, and a positioning component. Certain of the methods may comprise providing such an arthroplasty jig, and aligning the jig body with a surface of a bone so that the positioning component provides at least one of a visible, audible, or tactile indication that such alignment has been achieved. Some of the arthroplasty jigs may comprise a jig body that is configured to align with a surface of a bone, and that is marked with identifying information. Certain of the methods may comprise providing an arthroplasty jig comprising a jig body that is configured to align with a surface of a bone, or providing an arthroplasty jig blank, and marking the arthroplasty jig or the arthroplasty jig blank with identifying information.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Applicant: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi
  • Publication number: 20190117268
    Abstract: A custom arthroplasty guide and a method of manufacturing such a guide are disclosed herein. The method of manufacturing the custom arthroplasty guide includes: a) generating medical imaging slices of the portion of the patient bone; b) identifying landmarks on bone boundaries in the medical imaging slices; c) providing model data including image data associated with a bone other than the patient bone; d) adjusting the model data to match the landmarks; e) using the adjusted model data to generate a three dimensional computer model of the portion of the patient bone; f) using the three dimensional computer model to generate design data associated with the custom arthroplasty guide; and g) using the design data in manufacturing the custom arthroplasty guide.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 25, 2019
    Applicant: Howmedica Osteonics Corporation
    Inventors: Elena Pavlovskaia, Oleg Mishin, Boris E. Shpungin
  • Patent number: 10265083
    Abstract: A method of implant a knee prosthesis includes forming a bone void at an end of a bone, implanting a void filler in the bone void, and implanting a knee prosthesis onto the end of the bone so that a stem of the knee prosthesis is received by the void filler.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: April 23, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Damon J. Servidio, Carlos E. Collazo, Sujit Sivadas
  • Publication number: 20190105107
    Abstract: A method of performing an arthroplasty procedure on a knee region of a femur of a patient where an implant is implanted on the knee region of the femur as part of the arthroplasty procedure is disclosed herein. The method may include generating a planned postoperative positional relationship of the implant relative to the femur. The method may also include, with the computerized representation of the implant in the planned postoperative positional relationship with the computerized representation of the knee region of the femur, generating a planned resection of the femur that will facilitate the implant being implanted on the knee region of the femur in the planned postoperative positional relationship. And the method may also include guiding an actual resection of the femur according to the planned resection of the femur.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 11, 2019
    Applicant: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Venkata Surya Sarva, Irene Min Choi
  • Patent number: 10251707
    Abstract: A method of generating a computerized bone model representative of at least a portion of a patient bone in a pre-degenerated state. The method includes: generating at least one image of the patient bone in a degenerated state; identifying a reference portion associated with a generally non-degenerated portion of the patient bone; identifying a degenerated portion associated with a generally degenerated portion of the patient bone; and using information from at least one image associated with the reference portion to modify at least one aspect associated with at least one image associated the generally degenerated portion. The method may further include employing the computerized bone model representative of the at least a portion of the patient bone in the pre-degenerated state in defining manufacturing instructions for the manufacture of a customized arthroplasty jig.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: April 9, 2019
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi
  • Patent number: 10245048
    Abstract: Disclosed herein are systems and methods for securing a glenoid baseplate to a resected glenoid cavity in a preoperatively planned position. Image information obtained from the glenoid cavity and surrounding scapula is analyzed to determine the location of optimal bone stock. A guide is designed based on the image information, the guide having a patient specific contact surface that contacts a surface of the bone in a preoperatively planned position. The guide is designed to have a cannulated portion including a specific length. A marking pin having at least one reference feature is drilled into the glenoid cavity. The length of the cannulated portion of the guide is based on a location of the at least one reference feature on an outer surface of the marking pin. A cannulated reamer guided by the marking pin is then used to resect the glenoid cavity until a stop surface of the cannulated reamer contacts an end of the marking pin.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 2, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventor: Nicholas Olson
  • Patent number: 10245047
    Abstract: Disclosed herein are unicompartmental femoral and tibial arthroplasty jigs for respectively assisting in the performance of unicompartmental femoral and tibial arthroplasty procedures on femoral and tibial arthroplasty target regions. The jigs each include a mating surface. The mating surface of the femoral jig is configured to matingly receive and contact a generally planar area of an anterior side of a femoral shaft generally proximal of the patellar facet border and generally distal an articularis genu. The mating surface of the tibial jig is configured to matingly receive and contact a generally planar area of an anterior side of a tibial shaft distal of the tibial plateau edge and generally proximal of the tibial tuberosity.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: April 2, 2019
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Michael Koehle, Lorenzo R. Deveza
  • Patent number: 10245148
    Abstract: Disclosed herein are flexible prosthetic components that are designed to be snap-fit to bone of a patient. The prosthetic components each have an outer articular surface and an inner bone contacting surface opposing the outer articular surface. The bone contacting surface has an anterior surface and an opposing posterior surface configured to contact corresponding anterior and posterior surfaces of the patient's bone. At least one of the anterior and posterior surfaces includes one or more protrusions extending outwardly therefrom. The anterior and posterior surfaces of the prosthetic components may flex toward and away from one another such that the one or more protrusions may snap-fit into corresponding recesses in the bone. The bone of the patient may be resected to include planar surfaces or resurfaced to include a curved surface corresponding to the respective bone contacting surface of the prosthetic components.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: April 2, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventor: Keenan Hanson
  • Patent number: 10238437
    Abstract: A device, method, and system for treatment or fixation of a fractured, damaged, or deteriorating bone or bones in a mid-foot region. The device comprising an implant with both proximal and distal fastener holes, along with fastener slots in a central elongated body, for securing the implant to the appropriate osseous cortical structures of the foot. The method for treatment or fixation of fractured, damaged, or deteriorating bones in the medial column of the foot with use of a device such as an intramedullary nail that attaches to either the talus or first metatarsal bones to secure the medial cuneiform and navicular bones in place.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: March 26, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventor: William H. Simon
  • Patent number: 10238403
    Abstract: Disclosed herein are systems and methods for performing total hip arthroplasty with patient-specific guides. Pre-operative images of a pelvic region of a patient are taken in order to predefine the structure of the guides and corresponding implants. From the obtained image data an insertional vector for implanting an acetabular implant or component into an acetabulum of the patient is determined, wherein the insertional vector is coaxial with a polar axis of the acetabular component. Also from the obtained image data, a superior surface of the guides and implants can be shaped to match the acetabulum of the patient. A nub portion extending outwardly from the superior surface of the guides and implants is shaped to substantially match the shape of a fovea of the acetabulum. A guide portion of the guides forming a slot has a longitudinal axis coaxial with the determined insertional vector of a corresponding acetabular component.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: March 26, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: James V. Bono, Stuart L. Axelson, Jr., Adam Bastian
  • Patent number: 10238404
    Abstract: A flexible reamer for preparing a hole in a tissue includes a shaft that extends along a longitudinal axis between a proximal end and a distal end. The shaft is cannulated through and has a flexible portion along at least a portion of its length. The flexible portion includes a plurality of discrete, interlocking portions. An asymmetric tip at the distal end of the shaft has at least one flute positioned off-axis relative to a longitudinal axis of the flexible reamer.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: March 26, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Mark Steiner, Kyle Craig Pilgeram, Raymond West, Jeffrey Wyman, Ran Oren, Eran Zakai, Elad Rash
  • Patent number: 10231840
    Abstract: A tibial baseplate may include a bridge portion connecting medial and lateral condylar portions at an anterior end portion of the baseplate, and a pair of fixation members extending inferiorly from a bone contacting surface of each of the medial and lateral condylar portions. One of each pair of fixation members may extend posteriorly from the bone contacting surface, may be positioned anterior to the other of the pair, and may include at least one recessed surface. The recessed surface may include a lateral recess, a posterior recess, and a medial recess. During insertion of the tibial baseplate into the bone, one of each pair of fixation members may guide the tibial baseplate into the bone and secure the tibial baseplate, while the other of each pair of fixation members may drag along the bone so that bone chips accumulate in the recesses, providing for increased fixation of the baseplate.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: March 19, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventor: Damon J. Servidio
  • Patent number: 10231744
    Abstract: In a first embodiment, the present invention includes an instrumentation system for preparing a bone for soft tissue repair, the instrumentation system including a flexible drill pin capable of bending along a curved path; an aimer capable of engaging the flexible pin to bend the flexible pin; and a flexible reamer having a flexible portion along at least a portion of its length, the flexible portion comprising a plurality of laser cuts.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: March 19, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Kyle Craig Pilgeram, Ran Oren, Eran Zakai, Elad Rash
  • Patent number: 10226261
    Abstract: A method for performing a total joint arthroplasty procedure on a patient's damaged bone region. A CT image or other suitable image is formed of the damaged bone surfaces, and location coordinate values (xn,yn,zn) are determined for a selected sequence of bone surface locations using the CT image data. A mathematical model z=f(x,y) of a surface that accurately matches the bone surface coordinates at the selected bone spice locations, or matches surface normal vector components at selected bone surface locations, is determined. The model provides a production file from which a cutting jig and an implant device (optional), each patient-specific and having controllable alignment, are fabricated for the damaged bone by automated processing.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: March 12, 2019
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Lacerial Pearson, Stephen M. Samuel
  • Patent number: 10213220
    Abstract: A method and system for performing a total joint arthroplasty procedure on a patient's damaged bone region. A CT image or other suitable image is formed of the damaged bone surfaces, and location coordinate values (xn,yn,zn) are determined for a selected sequence of bone surface locations using the CT image data. A mathematical model z=f(x,y) of a surface that accurately matches the bone surface coordinates at the selected bone slice locations, or matches surface normal vector components at selected bone surface locations, is determined. The model provides a production file from which a cutting jig and an implant device (optional), each patient-specific and having controllable alignment, are fabricated for the damaged bone by automated processing.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: February 26, 2019
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Lacerial Pearson, Stephen M. Samuel
  • Patent number: 10213215
    Abstract: A surgical method for forming a void in bone includes the steps of positioning a support member securely within an intramedullary canal of a bone; attaching a guide member having a longitudinal axis to the support member in a fixed and offset relation to the intramedullary canal; connecting a cutting member having a cutting head to the guide member in a slidable arrangement along the longitudinal axis of the guide member such that the cutting head faces a first bone segment; and cutting the first bone segment along the longitudinal axis of the guide member, thereby forming a first offset bone void.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: February 26, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Damon J. Servidio, Carlos E. Collazo, Sujit Sivadas
  • Patent number: 10206688
    Abstract: Arthroplasty jigs and related methods are disclosed. Some of the arthroplasty jigs may comprise a jig body that is configured to align with a surface of a bone, and a positioning component. Certain of the methods may comprise providing such an arthroplasty jig, and aligning the jig body with a surface of a bone so that the positioning component provides at least one of a visible, audible, or tactile indication that such alignment has been achieved. Some of the arthroplasty jigs may comprise a jig body that is configured to align with a surface of a bone, and that is marked with identifying information. Certain of the methods may comprise providing an arthroplasty jig comprising a jig body that is configured to align with a surface of a bone, or providing an arthroplasty jig blank, and marking the arthroplasty jig or the arthroplasty jig blank with identifying information.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: February 19, 2019
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi
  • Patent number: 10194989
    Abstract: A method of manufacturing an arthroplasty jig is disclosed herein. The method may include the following: generate a bone model, wherein the bone model includes a three dimensional computer model of at least a portion of a joint surface of a bone of a patient joint to undergo an arthroplasty procedure; generate an implant model, wherein the implant model includes a three dimensional computer model of at least a portion of a joint surface of an arthroplasty implant to be used in the arthroplasty procedure; assess a characteristic associated with the patient joint; generate a modified joint surface of the implant model by modifying at least a portion of a joint surface of the implant model according to the characteristic; and shape match the modified joint surface of the implant model and a corresponding joint surface of the bone model.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: February 5, 2019
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Stephen M. Howell
  • Patent number: 10194919
    Abstract: A dynamic trialing method generally allows a surgeon to perform a preliminary bone resection on the distal femur according to a curved or planar resection profile. With the curved resection profile, the distal-posterior femoral condyles may act as a femoral trial component after the preliminary bone resection. This may eliminate the need for a separate femoral trial component, reducing the cost and complexity of surgery. With the planar resection profile, shims or skid-like inserts that correlate to the distal-posterior condyles of the final insert may be attached to the distal femur after the preliminary bone resection to facilitate intraoperative trialing. The method and related components may also provide the ability of a surgeon to perform iterative intraoperative kinematic analysis and gap balancing, providing the surgeon the ability to perform necessary ligament and/or other soft tissue releases and fine tune the final implant positions based on data acquired during the surgery.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: February 5, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Stuart L. Axelson, Jr., Emily Hampp, John R. Fossez
  • Publication number: 20190029831
    Abstract: A system includes a constrained acetabular insert, a dual mobility liner, and a femoral head. The constrained acetabular insert has its perimeter extending beyond hemisphere and the dual mobility liner has its perimeter extending beyond hemisphere and configured to tilt and rotate within the constrained acetabular insert. The femoral head is configured to tilt and rotate within the dual mobility liner. The constrained acetabular insert may include a plurality of tabs and the dual mobility liner may include screw threads for receiving the plurality of tabs.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 31, 2019
    Applicant: Howmedica Osteonics Corp.
    Inventor: Michael Ries