Abstract: Systems and methods described herein are directed to techniques for selective TCP spoofing of a TCP connection between a first and a second host based on spoofing resource conditions and characteristics of the hosts involved in the TCP connection. In implementations, spoofing resource conditions may be based on a percentage of available resources in use by each of a TCP spoofer and a TCP spoofer peer. In implementations, characteristics of the hosts may be determined by tracking i) each TCP connection application type seen for each host over a time window; and ii) packet loss conditions of local hosts over a time window.
Abstract: Half tone offset may be utilized to mitigate signal distortion caused by DC bias within OFDM-based systems. In addition a cyclic prefix may be utilized within an OFDM-based system to mitigate inter-symbol-interference. Presented herein are techniques and methods to efficiently apply a cyclic prefix to an OFDM symbol with half tone offset for low power systems.
Type:
Grant
Filed:
December 28, 2018
Date of Patent:
February 25, 2020
Assignee:
Hughes Network Systems, LLC
Inventors:
James Jehong Jong, Channasandra Ravishankar, Billy James Whitmarsh
Abstract: A system and method are provided for use with streaming blocks of data, each of the streaming blocks of data including a number bits of data. The system includes a first compressor and a second compressor. The first compressor can receive and store a number n blocks of the streaming blocks of data, can receive and store a block of data to be compressed of the streaming blocks of data, can compress consecutive bits within the block of data to be compressed based on the n blocks of the streaming blocks of data, can output a match descriptor and a literal segment. The match descriptor is based on the compressed consecutive bits. The literal segment is based on a remainder of the number of bits of the data to be compressed not including the consecutive bits. The second compressor can compress the literal segment and can output a compressed data block including the match descriptor and a compressed string of data based on the compressed literal segment.
Abstract: Disclosed methods include a resource manager in a multiple node network receiving a demand for additional bandwidth, from a terminal, and the resource manager having updated information on the state of the mobile node network and, using that the state information, performing test allocation of the requested bandwidth to the requesting terminal. Disclosed methods include determining whether previous commitments of service can be met with the test allocation in place. Associated with a positive result, an allocation is sent to the terminal.
Type:
Grant
Filed:
October 2, 2017
Date of Patent:
February 11, 2020
Assignee:
Hughes Network Systems LLC
Inventors:
Robert James Torres, Stanley Edward Kay, George Choquette
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for adjusting communication channel bandwidth. In some implementations, a method includes determining to change a bandwidth of a wireless communication channel on which a transmitter and receiver communicate. In response, and while the transmitter and the receiver maintain data communication on the wireless communication channel, a target value and rate of change is determined for each of one or more communication parameters of the wireless communication channel. The rate of change is a rate at which the communication parameter can be changed over time while continuing to transfer data on the wireless communication channel. Data is provided to the transmitter. The data can cause, for each communication parameter, the transmitter to gradually adjust the communication parameter using the rate of change until the communication parameter reaches the target value.
Abstract: Systems and methods are provided for separating the uplink signal from the downlink signal in a satellite communication system. A communication terminal for satellite communications is provided, comprising a reflector having a prime focus; a first feed located at the prime focus of the reflector and in optical communication with the reflector; a frequency-selective surface module having a reflected focus and located at a point along a communication path between the main reflector and the first feed; and a second feed located at the reflected focus of the frequency-selective surface module and in optical communication with the frequency-selective surface module.
Abstract: A system and method for reducing waste of a network resource is disclosed. The method including: providing a group of active subscribers; determining an underutilization level of the network resource for an upcoming allocation interval; calculating a throttle and a resource weight for the group of active subscribers to decrease the underutilization level; allocating the network resource based on the throttle and the resource weight; and adjusting, based on a feedback underutilization level, the throttle and the resource weight. In some embodiments, the throttle is based on congestion metrics including measuring available channel capacity, a latency, a queue depth, a count of subscribers in an outroute channel or the like. In some embodiments, the active subscribers may include under subscribers, over subscribers and premium subscribers, wherein each of the over subscribers have exceeded a respective network resource usage allowance for a respective subscription interval.
Abstract: Systems and methods are described, and one method includes allocate a continuous duration within a TDMA scheme, for asynchronous NOMA transmissions, and extending from an allocation start time to an allocation termination time, formed of contiguous time slots of the TDMA scheme, and included providing to asynchronous NOMA user terminals an indication of the allocation start time and termination time, indicating allowance to perform asynchronous NOMA transmissions within a start time constraint that starts of the asynchronous NOMA transmissions do not precede the allocation start time, and terminations of the asynchronous NOMA transmissions do not succeed the allocation termination time.
Type:
Application
Filed:
August 2, 2019
Publication date:
February 6, 2020
Applicant:
Hughes Network Systems, LLC
Inventors:
Lin-Nan LEE, Neal D. BECKER, Mustafa EROZ
Abstract: The present teachings disclose implementations of a UE and a method for providing a Narrowband Internet of Things (NB-IoT) network, the method including: receiving an NB-IoT downlink over a forward link; obtaining MAC configuration parameters, a transmit-timing offset and a transmit-frequency offset; pre-adjusting, to align with a return link timing and a return link frequency, a transmit-timing with the transmit-timing offset and a transmit-frequency with the transmit-frequency offset; requesting, based on the MAC configuration parameters and after the pre-adjusting, a connection with a Random-Access Preamble (RAR) over an NB-IoT uplink via the return link; and establishing the connection upon receiving a Random-Access Response (RAR), where a Round Trip-Time (RTT) from a transmitting antenna to a receiving antenna is greater than 67 microseconds (us), and both the NB-IoT downlink and the NB-IoT uplink use a mostly unchanged NB-IoT standard waveform.
Abstract: A method to provide dedicated bandwidth, the method including: provisioning transmitters to transmit over a satellite link; generating, for each of the transmitters, a respective transmit signal using a common codeblock asynchronous sub-carrier multiple access (A-SCMA) encoding for a respective information stream; transmitting, via the satellite link, the respective transmit signal from each of the transmitters; and varying a bandwidth rate of each of the respective transmit signals with a grant-free protocol, where the bandwidth rate of the respective transmit signals is less than or equal to a maximum system rate, the transmitting of at least two or more of the transmitters is at least partially concurrent, and each of the respective transmit signals is modulated at a common frequency over a common frequency band with a common polarization. The method reduces latency, jitter, and provides dynamic bandwidth allocation without allocation feedback.
Abstract: A receive planar phased array antenna on a communications platform is used to estimate a pointing error of the antenna and to orient the antenna boresight towards the transmitter.
Type:
Grant
Filed:
August 3, 2018
Date of Patent:
February 4, 2020
Assignee:
Hughes Network Systems, LLC
Inventors:
Anthony Noerpel, Uday R. Bhaskar, Neal David Becker, Stanley E. Kay
Abstract: A system and method for networked geofencing includes identifying restricted areas in a service region, and defining a protective zone surrounding the restricted areas. A service availability map containing the protective zones is generated and broadcast within the service region. The positions of terminals on the service availability map are detected relative to the protective zones. Terminals inside the protective zones establish communication using a first frequency range, and terminals outside of the protective zones establish communication using either the first frequency range or a second frequency range.
Abstract: Modulation and coding for a high altitude platform is disclosed. An example method includes determining a first modulation scheme and a first coding scheme that is spectrally efficient for a feeder link communicatively coupled to a gateway antenna and determining a second modulation scheme and second coding scheme that is robust for user links communicatively coupled to respective user antennas. Each user antenna is configured to communicate with a specified cell within a specified area. The example method also includes provisioning the telecommunications apparatus with the first modulation scheme, the first coding scheme, the second modulation scheme, and the second coding scheme.
Type:
Grant
Filed:
April 9, 2018
Date of Patent:
January 14, 2020
Assignee:
Hughes Network Systems LLC
Inventors:
Anthony Robert Noerpel, Stanley Edward Kay
Abstract: A deinterleaver device, a method for deinterleaving, an interleaver device, and a method for interleaving are disclosed. The method for deinterleaving includes: providing a memory and a stream count for a frame; virtually dividing the memory into equal sections, wherein a section count equals the stream count; calculating a write address for a sample of the samples based on a location of the sample in the frame and a correspondence of the location to one of the sections; receiving the sample; and writing the received sample to the write address, wherein the calculating and the write address corresponds to a correct deinterleaving location in one of the sections for the sample.
Abstract: An RF communications transmitter system comprising a processor, a switch and a plurality of feedhorns. The switch is configured to receive a feed signal of a frequency bandwidth. The processor is configured to control the switch to provide the feed signal to each of at least two of the feedhorns for a respective time period. Each of the at least two feedhorns is configured to generate a beam during the respective time period that the feed signal is provided thereto, wherein the beam is formed based on the feed signal and is transmitted to cover a geographic area of the Earth. The formation and transmission of the beams by the feedhorns is controlled by the processor to provide a time-based allocation of bandwidth amongst the beams based on the time period that the feed signal is provided to each of the feedhorns and a respective frequency/polarization reuse scheme.
Type:
Grant
Filed:
July 16, 2019
Date of Patent:
January 7, 2020
Assignee:
Hughes Network Systems, LLC
Inventors:
Stanley Kay, Dave Roos, Paul Gaske, Anthony Noerpel
Abstract: Various methods and apparatuses are disclosed, including a method for optimizing FEC code for an average number of interfering users in a multiple access communication, that includes receiving an FEC code optimization information, switchable between at least a first value and a second value, and selecting a first optimized FEC code based at least in part on the FEC code selection information being at the first value, and selecting a second optimized FEC code based at least in part on the FEC code selection information being at the second value. The method can include receiving a source bit stream, encoding bits of the source bit stream according to the selected optimized FEC code into a series of FEC encoded bits, and a parity check matrix of the first optimized FEC code has a first average information bit node degree, and a parity check matrix of the second optimized FEC code has a second average information bit node degree.
Abstract: A system and method for serializing parallel streams of information. The system and method employ a plurality of buffers and a controller. The plurality of buffers are configured to store information received from a demodulator and output the stored information to a decoder. The controller is configured to store a plurality of frames of information output in a parallel manner from the demodulator into the plurality of buffers, and control the output of the plurality of buffers such that each of the plurality of frames is output to the decoder once stored.
Abstract: Implementations described herein are directed to satellite transmitters and receivers for applying OFDM-like signaling in broadband satellite transmissions. In such systems, one or more data signals may be shaped and composited into a composite data signal at an OFDM-like transmitter for transmission over a satellite channel. The data signals that are carried over the satellite channel by the composited signal may have their own carrier, and each signal may carry multiple OFDM subcarriers. Further implementations are directed to correcting for distortion in satellite communications systems that utilize OFDM-like signaling.
Abstract: Systems and methods are disclosed and include a method that includes adding a training symbol prefix to an OFDM symbol frame, the prefix including a plurality of training symbols, each including N sub-symbol fields. N/2 of the sub-symbol fields are zero valued, and N/2 of the sub-symbol fields carry corresponding symbols of a N/2 sub-symbol pseudo random training symbol. A first half of the pseudo random training symbol is symmetrical to a second half of the pseudo random training symbol. An OFDM N-sub-carrier transmission carries the prefix as signal power on a first N/2 of its N sub-carriers and suppresses signal power on a second N/2 of the sub-carriers. The first N/2 and second N/2 sub-carriers alternate in the frequency domain.