Abstract: Examples are disclosed of methods to recycle coated positive-electrode material of a lithium-ion battery. One example provides a method including relithiating the coated positive-electrode material in a solution comprising lithium ions, and after relithiating, separating the coated positive-electrode material from the solution. In some examples, coated positive-electrode materials may be reinstated using lower process temperatures than uncoated positive-electrode material.
Abstract: Examples are disclosed of methods to deactivate a lithium-containing battery. One example provides a method for discharging a lithium-containing battery, the method comprising adding the lithium-containing battery to a vessel, adding an oxidizing fluid to the vessel, adding carbon dioxide to the vessel, pressurizing the vessel, heating the vessel to form lithium carbonate within the lithium-containing battery, reducing heat and pressure in the vessel, and removing the battery from the vessel.
Abstract: Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. One example provides a method including relithiating the positive-electrode material in a solution comprising lithium ions and an oxidizing agent, and after relithiating, separating the positive-electrode material from the solution.
Abstract: Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. One example provides a method including relithiating the positive-electrode material in a solution comprising lithium ions and an oxidizing agent, and after relithiating, separating the positive-electrode material from the solution.
Abstract: Embodiments are disclosed herein that relate to recycling and refurbishing battery electrode materials. For example, one disclosed embodiment provides a method comprising obtaining a quantity of spent electrode material, reacting the spent electrode material with an aqueous lithium solution in an autoclave while heating the spent electrode material and the aqueous lithium solution to form a hydrothermally reacted spent electrode material, removing the hydrothermally reacted spent electrode material from the aqueous lithium solution, and sintering the hydrothermally reacted spent material to form a recycled electrode material.