Patents Assigned to Humatics Corporation
-
Publication number: 20250132029Abstract: Systems and methods for facilitating interactions between a medical device (e.g., an imaging device, a surgical tool, a robotic arm, etc.) and a patient using radio frequency (RF) co-localization are provided. The systems include a radio-frequency (RF) interrogator system, one or more first RF target devices for coupling to a patient support for supporting a patient with respect to whom a medical device is to perform a task, and one or more second RF target devices for coupling to the medical device. A controller determines a position of the patient support within an RF interrogator system reference frame, a first position of the medical device within the RF interrogator system reference frame, a transformation between the RF interrogator system reference frame and a patient support reference frame, and a second position of the medical device within the patient support reference frame.Type: ApplicationFiled: June 18, 2024Publication date: April 24, 2025Applicant: Humatics CorporationInventors: David A. Mindell, James Campbell Kinsey, Gregory L. Charvat, Matthew Carey, Devon Reed Clark, Eben Christopher Rauhut, Jyotsna Marie Winsor
-
Patent number: 12103572Abstract: Described herein are techniques for determining motion characteristics of trains traveling along a train track. In some embodiments, a processor may determine an estimated position of a train using an observed position obtained using one or more UWB antennas and an observed position obtained using one or more GNSS receivers. In some embodiments, a processor may access information specifying a geometry of a train track and determining the position of a train along the train track using an observed position determined using one or more UWB antennas and/or GNSS receiver(s) and the information specifying the geometry of the train track. In some embodiments, a processor may determine estimated positions of a train using the geometry of the train track and at least one observation of the train obtained using one or more positioning devices and select the position of the train from among the estimated positions.Type: GrantFiled: March 30, 2023Date of Patent: October 1, 2024Assignee: Humatics CorporationInventors: Pedro Teixeira, Michael Kuhlman, Reza Rezaie, Joshua Senna, Aaron Whittemore
-
Patent number: 12080415Abstract: Systems and methods for facilitating interactions between a medical device (e.g., an imaging device, a surgical tool, a robotic arm, etc.) and a patient using radio frequency (RF) co-localization are provided. The systems include a radio-frequency (RF) interrogator system, one or more first RF target devices for coupling to a patient support for supporting a patient with respect to whom a medical device is to perform a task, and one or more second RF target devices for coupling to the medical device. A controller determines a position of the patient support within an RF interrogator system reference frame, a first position of the medical device within the RF interrogator system reference frame, a transformation between the RF interrogator system reference frame and a patient support reference frame, and a second position of the medical device within the patient support reference frame.Type: GrantFiled: October 8, 2021Date of Patent: September 3, 2024Assignee: Humatics CorporationInventors: David A. Mindell, James Campbell Kinsey, Gregory L. Charvat, Matthew Carey, Devon Reed Clark, Eben Christopher Rauhut, Jyotsna Marie Winsor
-
Publication number: 20230314550Abstract: Described herein are techniques for determining motion characteristics of trains traveling along a train track. In some embodiments, a processor may determine an estimated position of a train using an observed position obtained using one or more UWB antennas and an observed position obtained using one or more GNSS receivers. In some embodiments, a processor may access information specifying a geometry of a train track and determining the position of a train along the train track using an observed position determined using one or more UWB antennas and/or GNSS receiver(s) and the information specifying the geometry of the train track. In some embodiments, a processor may determine estimated positions of a train using the geometry of the train track and at least one observation of the train obtained using one or more positioning devices and select the position of the train from among the estimated positions.Type: ApplicationFiled: March 30, 2023Publication date: October 5, 2023Applicant: Humatics CorporationInventors: Michael Kuhlman, Pedro Teixeira, Reza Rezaie, Joshua Senna, Aaron Whittemore
-
Publication number: 20230311961Abstract: Described herein are techniques for determining motion characteristics of trains traveling along a train track. In some embodiments, a processor may determine an estimated position of a train using an observed position obtained using one or more UWB antennas and an observed position obtained using one or more GNSS receivers. In some embodiments, a processor may access information specifying a geometry of a train track and determining the position of a train along the train track using an observed position determined using one or more UWB antennas and/or GNSS receiver(s) and the information specifying the geometry of the train track. In some embodiments, a processor may determine estimated positions of a train using the geometry of the train track and at least one observation of the train obtained using one or more positioning devices and select the position of the train from among the estimated positions.Type: ApplicationFiled: March 30, 2023Publication date: October 5, 2023Applicant: Humatics CorporationInventors: Pedro Teixeira, Michael Kuhlman, Reza Rezaie, Joshua Senna, Aaron Whittemore
-
Publication number: 20230311962Abstract: Described herein are techniques for determining motion characteristics of trains traveling along a train track. In some embodiments, a processor may determine an estimated position of a train using an observed position obtained using one or more UWB antennas and an observed position obtained using one or more GNSS receivers. In some embodiments, a processor may access information specifying a geometry of a train track and determining the position of a train along the train track using an observed position determined using one or more UWB antennas and/or GNSS receiver(s) and the information specifying the geometry of the train track. In some embodiments, a processor may determine estimated positions of a train using the geometry of the train track and at least one observation of the train obtained using one or more positioning devices and select the position of the train from among the estimated positions.Type: ApplicationFiled: March 30, 2023Publication date: October 5, 2023Applicant: Humatics CorporationInventors: Pedro Teixeira, Michael Kuhlman, Reza Rezaie, Joshua Senna, Aaron Whittemore
-
Patent number: 11688929Abstract: A system comprising synchronization circuitry, a first interrogator, and a second interrogator. The first interrogator includes a transmit antenna; a first receive antenna, and circuitry configured to generate, using radio-frequency (RF) signal synthesis information received from the synchronization circuitry, a first RF signal for transmission by the transmit antenna, and generate, using the first RF signal and a second RF signal received from a target device by the first receive antenna, a first mixed RF signal indicative of a distance between the first interrogator and the target device. The second interrogator includes a second receive antenna, and circuitry configured to generate, using the RF signal synthesis information, a third RF signal; and generate, using the third RF signal and a fourth RF signal received from the target device by the second receive antenna, a second mixed RF signal indicative of a distance between the second interrogator and the target device.Type: GrantFiled: April 26, 2021Date of Patent: June 27, 2023Assignee: Humatics CorporationInventors: Gregory L. Charvat, David A. Mindell
-
Publication number: 20220271415Abstract: A device comprising: a substrate; a semiconductor die mounted on the substrate; a transmit antenna fabricated on the substrate and configured to transmit radio-frequency (RF) signals at least at a first center frequency; a receive antenna fabricated on the substrate and configured to receive RF signals at least at a second center frequency different than the first center frequency; and circuitry integrated with the semiconductor die and configured to provide RF signals to the transmit antenna and to receive RF signals from the receive antenna.Type: ApplicationFiled: November 4, 2021Publication date: August 25, 2022Applicant: Humatics CorporationInventors: Gregory L. Charvat, David A. Mindell
-
Patent number: 11237263Abstract: A system and method is disclosed for measuring time of flight to an object. A transmitter transmits an electromagnetic signal and provides a reference signal corresponding to the electromagnetic signal. A receiver receives the electromagnetic signal and provides a response signal corresponding to the received electromagnetic signal. A detection circuit is configured to determine a time of flight between the transmitter and the receiver based upon the reference signal and the response signal.Type: GrantFiled: March 10, 2020Date of Patent: February 1, 2022Assignee: Humatics CorporationInventors: David A. Mindell, Gregory L. Charvat, Gary A. Cohen, Dana R. Yoerger
-
Publication number: 20220021120Abstract: Described herein are systems for radio-frequency (RF) localization. The systems developed by the inventors are designed to improve the accuracy of RF localization to millimeter and sub-millimeter ranges, and additionally, are designed to do so while also limiting manufacturing costs. The RF localization systems developed by the inventors leverage the relatively low costs associated with the manufacturing of printed circuit board assemblies (PCBAs). Manufacturing RF localization devices using PCBAs poses a number of challenges, including large minimum feature size and the presence of surface waves. Described herein are techniques for addressing challenges arising in connection with RF localization devices fabricated using PCBAs. One technique involves the use of slot-fed antennas, which makes the device efficient notwithstanding the large minimum feature size. Another technique involves the use of frequency selective surfaces for suppressing surface waves.Type: ApplicationFiled: July 20, 2021Publication date: January 20, 2022Applicant: Humatics CorporationInventors: Christopher Ryan Montoya, Gregory L. Charvat, Andrew Habib Zai
-
Patent number: 11177554Abstract: A device comprising: a substrate; a semiconductor die mounted on the substrate; a transmit antenna fabricated on the substrate and configured to transmit radio-frequency (RF) signals at least at a first center frequency; a receive antenna fabricated on the substrate and configured to receive RF signals at least at a second center frequency different than the first center frequency; and circuitry integrated with the semiconductor die and configured to provide RF signals to the transmit antenna and to receive RF signals from the receive antenna.Type: GrantFiled: May 12, 2020Date of Patent: November 16, 2021Assignee: Humatics CorporationInventors: Gregory L. Charvat, David A. Mindell
-
Publication number: 20210242570Abstract: A system comprising synchronization circuitry, a first interrogator, and a second interrogator. The first interrogator includes a transmit antenna; a first receive antenna, and circuitry configured to generate, using radio-frequency (RF) signal synthesis information received from the synchronization circuitry, a first RF signal for transmission by the transmit antenna, and generate, using the first RF signal and a second RF signal received from a target device by the first receive antenna, a first mixed RF signal indicative of a distance between the first interrogator and the target device. The second interrogator includes a second receive antenna, and circuitry configured to generate, using the RF signal synthesis information, a third RF signal; and generate, using the third RF signal and a fourth RF signal received from the target device by the second receive antenna, a second mixed RF signal indicative of a distance between the second interrogator and the target device.Type: ApplicationFiled: April 26, 2021Publication date: August 5, 2021Applicant: Humatics CorporationInventors: Gregory L. Charvat, David A. Mindell
-
Patent number: 11050133Abstract: A system comprising: an interrogator device, comprising: a first transmit antenna configured to transmit radio-frequency (RF) signals circularly polarized in a first rotational direction; and a first receive antenna configured to receive RF signals circularly polarized in a second rotational direction different from the first rotational direction; and a target device, comprising: a second receive antenna configured to receive RF signals circularly polarized in the first rotational direction and a second transmit antenna configured to transmit, to the interrogator device, RF signals circularly polarized in the second rotational direction.Type: GrantFiled: December 16, 2016Date of Patent: June 29, 2021Assignee: Humatics CorporationInventors: Gregory L. Charvat, David A. Mindell
-
Patent number: 11050497Abstract: A device comprising: a radio frequency (RF) coupler comprising input, output, and coupled ports; an antenna capable of receiving RF signals having a first characteristic and transmitting RF signals having a second characteristic, the antenna connected to the RF coupler to provide received RF signals to the input port of the RF coupler and transmit RF signals received at the input port via coupling to signals received at the coupled port; and signal transformation circuitry having an input connected to the output port of the RF coupler to receive RF signals provided by the antenna to the input port and an output connected to the coupled port, the signal transformation circuitry configured to transform first RF signals having the first characteristic received from the output port to second RF signals having the second characteristic and to provide them to the coupled port.Type: GrantFiled: July 28, 2020Date of Patent: June 29, 2021Assignee: Humatics CorporationInventors: Gregory L. Charvat, Andrew Habib Zai, Christopher Ryan Montoya
-
Patent number: 11050134Abstract: A device comprising: a substrate; a semiconductor die mounted on the substrate; a transmit antenna fabricated on the substrate and configured to transmit radio-frequency (RF) signals at least at a first center frequency; a receive antenna fabricated on the substrate and configured to receive RF signals at least at a second center frequency different than the first center frequency; and circuitry integrated with the semiconductor die and configured to provide RF signals to the transmit antenna and to receive RF signals from the receive antenna.Type: GrantFiled: September 4, 2018Date of Patent: June 29, 2021Assignee: Humatics CorporationInventors: Gregory L. Charvat, David A. Mindell
-
Publication number: 20210129878Abstract: Described herein are techniques for determining motion characteristics (e.g., position, velocity, acceleration, etc.) of one or more trains traveling along a train track, such that train control systems may have the information needed to safely operate the trains at higher speeds and with shorter separation between trains. In accordance with various embodiments, systems and methods described herein may be configured to determine a position, velocity, and/or acceleration of a train traveling along a train track. In some embodiments, the motion characteristics may be determined one or more radio frequency antennas onboard the train, such as in communication with one or more anchor nodes positioned adjacent the train track. Alternatively or additionally, in some embodiments motion characteristics may be determined using one or more one or more inertial measurement units (IMUs) onboard the train.Type: ApplicationFiled: November 5, 2020Publication date: May 6, 2021Applicant: Humatics CorporationInventors: Joshua Senna, James Campbell Kinsey, Arihant Lunawat, Mike Einhorn, Devon Reed Clark
-
Publication number: 20210129881Abstract: Described herein are techniques for determining motion characteristics (e.g., position, velocity, acceleration, etc.) of one or more trains traveling along a train track, such that train control systems may have the information needed to safely operate the trains at higher speeds and with shorter separation between trains. In accordance with various embodiments, systems and methods described herein may be configured to determine a position, velocity, and/or acceleration of a train traveling along a train track. In some embodiments, the motion characteristics may be determined one or more radio frequency antennas onboard the train, such as in communication with one or more anchor nodes positioned adjacent the train track. Alternatively or additionally, in some embodiments motion characteristics may be determined using one or more one or more inertial measurement units (IMUs) onboard the train.Type: ApplicationFiled: November 5, 2020Publication date: May 6, 2021Applicant: Humatics CorporationInventors: Joshua Senna, James Campbell Kinsey, Arihant Lunawat, Mike Einhorn, Devon Reed Clark
-
Patent number: 10992024Abstract: A system comprising synchronization circuitry, a first interrogator, and a second interrogator. The first interrogator includes a transmit antenna; a first receive antenna, and circuitry configured to generate, using radio-frequency (RF) signal synthesis information received from the synchronization circuitry, a first RF signal for transmission by the transmit antenna, and generate, using the first RF signal and a second RF signal received from a target device by the first receive antenna, a first mixed RF signal indicative of a distance between the first interrogator and the target device. The second interrogator includes a second receive antenna, and circuitry configured to generate, using the RF signal synthesis information, a third RF signal; and generate, using the third RF signal and a fourth RF signal received from the target device by the second receive antenna, a second mixed RF signal indicative of a distance between the second interrogator and the target device.Type: GrantFiled: October 21, 2019Date of Patent: April 27, 2021Assignee: Humatics CorporationInventors: Gregory L. Charvat, David A. Mindell
-
Publication number: 20200358539Abstract: A device comprising: a radio frequency (RF) coupler comprising input, output, and coupled ports; an antenna capable of receiving RF signals having a first characteristic and transmitting RF signals having a second characteristic, the antenna connected to the RF coupler to provide received RF signals to the input port of the RF coupler and transmit RF signals received at the input port via coupling to signals received at the coupled port; and signal transformation circuitry having an input connected to the output port of the RF coupler to receive RF signals provided by the antenna to the input port and an output connected to the coupled port, the signal transformation circuitry configured to transform first RF signals having the first characteristic received from the output port to second RF signals having the second characteristic and to provide them to the coupled port.Type: ApplicationFiled: July 28, 2020Publication date: November 12, 2020Applicant: Humatics CorporationInventors: Gregory L. Charvat, Andrew Habib Zai, Christopher Ryan Montoya
-
Publication number: 20200341137Abstract: A system and method is disclosed for measuring time of flight to an object. A transmitter transmits an electromagnetic signal and provides a reference signal corresponding to the electromagnetic signal. A receiver receives the electromagnetic signal and provides a response signal corresponding to the received electromagnetic signal. A detection circuit is configured to determine a time of flight between the transmitter and the receiver based upon the reference signal and the response signal.Type: ApplicationFiled: March 10, 2020Publication date: October 29, 2020Applicant: Humatics CorporationInventors: David A. Mindell, Gregory L. Charvat, Gary A. Cohen, Dana R. Yoerger