Patents Assigned to Hydrocarbon Research, Inc.
  • Patent number: 5382734
    Abstract: Hydrocarbon feedstocks containing tetra-hydro-dicyclo-penta-diene (THDCPD) dissolved in a suitable solvent is substantially totally reformed and hydroconverted in a non-catalytic reactor having length/internal diameter ratio between 10/1 and 30/1 at critical controlled reaction conditions, including molar ratio of hydrogen-to-THDCPD of 5.0:1-12.0:1, reaction temperature of 1100.degree.-1350.degree. F., reactor pressure of 550-650 psig, and feedstream reactor residence time of 10-50 seconds so as to yield primarily benzene product together with minor aromatic materials. Suitable solvent materials can be an aromatic solvent, a non-aromatic solvent containing naphthenic and paraffinic compounds, or a combination of each. When the solvent is predominantly an alkyl aromatics mixture, these components are hydrodealkylated while the THDCPD material undergoes simultaneous reformation in the reactor.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: January 17, 1995
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Hashim Sardar, Lawrence M. Abrams
  • Patent number: 4673552
    Abstract: An improved flow distribution system for a catalytic reactor plenum chamber for a gas-liquid-solids ebullated bed reactor including a downwardly directed conduit and a flow distributor device such as a baffled nozzle attached to the inner end of the conduit, said nozzle containing at least two substantially parallel baffle plates usually oriented substantially normal to the nozzle inlet flow direction for providing initially downward flow and good mixing and radial flow disperson of gas-liquid materials in the lower portion of the plenum. The initially downward flow is then deflected generally upwardly by the curved lower head of the reactor plenum chamber and passes uniformly upwardly through a flow distribution grid into the ebullated catalyst bed. A sparger can be provided in the plenum above the flow distributor device for feeding additional gas-liquid mixture into the reactor.
    Type: Grant
    Filed: May 3, 1985
    Date of Patent: June 16, 1987
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Allen S. Li, Richard M. Eccles, Lloyd M. Ruef
  • Patent number: 4427535
    Abstract: A process for the catalytic hydroconversion of special petroleum feedstocks, containing 10-28 W % asphaltenes, and having Ramsbottom carbon residue of 12-35 W %, such as Cold Lake and Lloydminster crude and residua materials. In the process, high percentage conversion (65-80 V %) to lower boiling hydrocarbon products can be achieved by maintaining a narrow range of reaction conditions, preferably in an ebullated bed catalytic reactor. Reaction temperature is 780.degree.-835.degree. F., hydrogen partial pressure is 2000-3000 psig, and space velocity is 0.25-5.0 V.sub.f /hr/V.sub.r. Higher conversion of about 80 to 95 volume percent can be obtained with recycle of 975.degree. F..sup.+ vacuum bottoms fraction to the reactor. Useful catalysts have total pore volume of about 0.5-0.9 cc/gm and include cobalt-molybdenum and nickel-molybdenum on alumina support.
    Type: Grant
    Filed: November 2, 1981
    Date of Patent: January 24, 1984
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Govanon Nongbri, Susan M. Brandt, Michael C. Chervenak
  • Patent number: 4424109
    Abstract: An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores.
    Type: Grant
    Filed: April 7, 1981
    Date of Patent: January 3, 1984
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Derk T. A. Huibers, Chia-Chen C. Kang
  • Patent number: 4421568
    Abstract: A method for producing L-sugars including L-idose and L-gulose as well as D-fructose from D-glucose. The method comprises epimerizing D-glucose to a mixture of D-glucose and D-mannose, hydrogenating the mixture in a fixed catalyst bed to provide D-sorbitol and D-mannitol, separating the D-mannitol by fractional crystallization, oxydizing separately the D-sorbitol and D-mannitol to provide L-sorbose and D-fructose, respectively; and racemizing the L-sorbose in a weak alkaline solution to provide a mixture of L-sorbose, L-idose and L-gulose, and precipitating the remaining L-sorbose with a dilute lime solution. The unconverted L-sorbose is recovered and recycled.
    Type: Grant
    Filed: August 26, 1981
    Date of Patent: December 20, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventor: Derk T. A. Huibers
  • Patent number: 4420644
    Abstract: A lignin-containing feed material in particulate form is mixed with a process-derived slurrying oil and fed into an ebullated catalyst bed hydrocracking reactor. Reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 500-2500 psig hydrogen partial pressure and space velocity of 1.0-10 wt. lignin/hr./wt. catalyst. The reaction products are phase separated to recover hydrogen and slurrying oil, and the resulting liquid stream is passed to a thermal hydrodealkylation step. The reacted stream is fractionated to produce phenol and benzene products, along with a heavy alkylated material which is recycled to the hydrodealkylation step to increase the yield of phenol and benzene.
    Type: Grant
    Filed: August 24, 1981
    Date of Patent: December 13, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Derk T. A. Huibers, Hugh J. Parkhurst, Jr.
  • Patent number: 4400181
    Abstract: Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature.
    Type: Grant
    Filed: January 28, 1982
    Date of Patent: August 23, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventors: George J. Snell, Paul H. Kydd
  • Patent number: 4400468
    Abstract: A process is provided for producing adipic acid from a renewable resource, i.e., biomass. The process comprises: hydrolyzing the renewable resource to provide 5-hydroxymethylfurfural, hydrogenating the 5-hydroxymethylfurfural in the presence of a catalyst to provide 2, 5-tetrahydrofurandiomethanol, treating the 2, 5-tetrahydrofurandiomethanol with hydrogen in the presence of a catalyst to provide 1, 6 hexanediol, and oxidizing the 1, 6 hexanediol in the presence of a microorganism to provide adipic acid. The formation of the adipic acid is provided with the microorganism of Gluconobacter oxydans subsp. oxydans. The renewable resources are wastes selected from the group consisting of paper, wood, corn stalks, and logging residues.
    Type: Grant
    Filed: October 5, 1981
    Date of Patent: August 23, 1983
    Assignee: Hydrocarbon Research Inc.
    Inventor: Marcel Faber
  • Patent number: 4381986
    Abstract: A process and apparatus for cooling and solidifying a stream of heavy hydrocarbon material normally boiling above about 850.degree. F., such as vacuum bottoms material from a coal liquefaction process. The hydrocarbon stream is dropped into a liquid bath, preferably water, which contains a screw conveyor device and the stream is rapidly cooled, solidified and broken therein to form discrete elongated particles. The solid extrudates or prills are then dried separately to remove substantially all surface moisture, and passed to further usage.
    Type: Grant
    Filed: July 27, 1981
    Date of Patent: May 3, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Salvatore J. Antieri, Alfred G. Comolli
  • Patent number: 4380678
    Abstract: Aldoses such as glucose solution are catalytically hydrogenated in a multiple-stage fixed-bed reaction process to produce glycerol and other polyol products. The feedstream pH to each reactor is controlled to between about 7 and 14 by adding an alkaline promotor material such as calcium hydroxide. First-stage reaction zone conditions are 130.degree.-180.degree. C. temperature, 500-2000 psig hydrogen partial pressure, and feedstream liquid space velocity is within range of 0.5-3.5 V.sub.f /Hr/V.sub.c. The first reactor uses a high activity nickel catalyst to produce at least about 98 W % conversion to alditol such as sorbitol solution.The resulting alditols such as 15-40 W % sorbitol solution in water is catalytically hydrocracked in a second-stage fixed-bed reaction zone preferably using a high-activity nickel catalyst to produce at least about 30 W % conversion to glycerol and glycols products. Second-stage reaction zone conditions are 420.degree.-520.degree. F.
    Type: Grant
    Filed: March 20, 1981
    Date of Patent: April 19, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventor: Amalesh K. Sirkar
  • Patent number: 4371616
    Abstract: A method for producing L-sugars including L-idose and L-gulose from D-glucose. The method comprises hydrogenating D-glucose to provide sorbitol, oxydizing the D-sorbitol to provide L-sorbose, racemizing the L-sorbose to provide a mixture of L-sorbose, L-idose and L-gulose, and precipitating the L-sorbose with lime from a dilute solution. The unconverted L-sorbose is recovered by carbonation and recycled. The hydrogenation of glucose is done in a fixed catalyst bed.
    Type: Grant
    Filed: August 26, 1981
    Date of Patent: February 1, 1983
    Assignee: Hydrocarbon Research, Inc.
    Inventor: Derk T. A. Huibers
  • Patent number: 4366332
    Abstract: Alditols such as 15-40 W. % sorbitol solution in water are catalytically hydrocracked in a fixed bed reaction process using a high activity nickel catalyst to produce at least about 30 W. % conversion to glycerol and glycol products. The feedstream pH is controlled to prevent catalyst damage by adding a basic promotor material such as calcium hydroxide. Reaction zone conditions are maintained at 420.degree.-520.degree. F. temperature, 1200-2000 psig hydrogen partial pressure, and liquid hourly space velocity of 1.5 to 3.0. To maintain desired activity and glycerol yield, the catalyst is regenerated to provide catalyst age of 8-200 hours. The reaction products are separated in a recovery step, and any alditols can be recycled to the reaction zone for further hydrogenolysis to produce 40-90 W. % glycerol product. Sorbitol conversion is maintained preferably at between about 30-70 W.
    Type: Grant
    Filed: January 21, 1981
    Date of Patent: December 28, 1982
    Assignee: Hydrocarbon Research, Inc.
    Inventors: James C. Chao, Derk T. A. Huibers
  • Patent number: 4362213
    Abstract: Heavy oil or bitumen is extracted and removed from underground oil bearing formations having low permeability such as tar sands by injection of hot hydrocarbon solvent vapor into a single well hole at a pressure not substantially exceeding the pressure in the formation to effectively heat and extract the bitumen. The hot solvent vapor is passed downwardly through an annular passage of concentric piping place in the well bore and is injected out through upper performations in the casing and into the formation. The hot solvent vapor condenses in the formation and drains along with recovered oil through lower perforations back into the bottom end of the inner pipe, from which the product oil and solvent mixture is pumped to above ground. The solvent is partially reclaimed from the oil product by distillation means and the solvent friction is reheated and reinjected into the well bore for further use.
    Type: Grant
    Filed: November 19, 1980
    Date of Patent: December 7, 1982
    Assignee: Hydrocarbon Research, Inc.
    Inventor: Paul R. Tabor
  • Patent number: 4359326
    Abstract: A process and pressurized, gasification reactor apparatus for converting combustible carbon containing materials such as coal char and other carbonaceous solids or carbonaceous solids/heavy oil combinations to an intermediate heating value fuel gas. The gasification reactor includes an insulated fluidized bed reactor chamber, an upper reactor housing for a freely suspended bayonet bundle type heat exchanger for (a) superheating incoming saturated steam and (b) cooling outgoing high temperature product gas, and a lower reactor housing structure which includes a free-floating, conically-shaped perforated plenum chamber. The superheated steam and oxygen are premixed with the plenum chamber before being pressure directed into the fluidized bed reactor chamber for mixture and combustion with the incoming combustible carbon containing materials such as coal char. After reaction of the superheated steam, oxygen and coal char in the fluidized bed reactor at temperatures ranging from 900.degree. F. to 1750.degree. F.
    Type: Grant
    Filed: November 20, 1980
    Date of Patent: November 16, 1982
    Assignee: Hydrocarbon Research, Inc.
    Inventors: Franklin D. Hoffert, John D. Milligan, Jose M. Marina, Jose M. Fernandez
  • Patent number: 4359592
    Abstract: Organic liquid-water solutions, such as 5-30 W % alcohol in water, are separated efficiently in a two-stage adsorption process using a bed of selected adsorbent material in each stage to produce a concentrated organic product. Each adsorbent is selected to effectively adsorb the minor component from the feed solution and thus provide a dehydrated alcohol product. In the first-stage adsorber bed, activated carbon is used to selectively adsorb the alcohol, after which the desorbed alcohol vapor is passed to a second-stage adsorber bed of molecular sieve adsorbent for virtually complete removal of the remaining water. The process provides a dehydrated alcohol liquid product preferably containing less than about 2 W % water, and requires low energy usage.
    Type: Grant
    Filed: March 23, 1981
    Date of Patent: November 16, 1982
    Assignee: Hydrocarbon Research, Inc.
    Inventors: James C. Chao, Cheng-Yih Jenq
  • Patent number: 4359353
    Abstract: The present invention provides a method of tagging a substance to allow subsequent identification thereof comprising incorporating in the substance a polypeptide. Typically, the polypeptide is a synthetic polypeptide having a specific sequence of amino acids to constitute a particular molecular code which can be easily and readily identified.
    Type: Grant
    Filed: May 18, 1981
    Date of Patent: November 16, 1982
    Assignee: Hydrocarbon Research, Inc.
    Inventor: Paul H. Kydd
  • Patent number: 4354852
    Abstract: For hot hydrocarbon liquids and slurries containing a vapor portion derived from a hydrogenation process, the vapor portion is separated from the liquid portion within a separation zone by providing a liquid vortex flow pattern having a gas core. The vapor is withdrawn from the vortex core through an inwardly-extending conduit, and the remaining rotating liquid portion is passed to below the vortex. If catalyst particles are also contained in the hot hydrocarbon liquid, such as in a coal or oil hydrogenation reaction effluent liquid at elevated temperature and pressure conditions, such catalysts can be conveniently separated from a product liquid stream and returned to the reaction zone along with the recycled liquid. A clean liquid stream is withdrawn from the recycled liquid for further processing. If desired, the phase separation zone utilizing a liquid vortex can be provided within the catalytic reaction zone.
    Type: Grant
    Filed: April 24, 1981
    Date of Patent: October 19, 1982
    Assignee: Hydrocarbon Research, Inc.
    Inventor: Paul H. Kydd
  • Patent number: 4344840
    Abstract: Raw shale oil containing precipitable inorganic compounds such as iron and arsenic are preheated to below the precipitation temperature and then catalytically hydrocracked in an ebullated bed catalytic reactor. The metal compounds are deposited on the catalyst in the reactor, from which they are withdrawing along with used catalyst which is replaced with fresh catalyst. The reactor effluent is further hydrotreated in a fixed bed catalyst reactor, usually at more severe conditions of 800.degree.-840.degree. F. and 2000-2800 psig, hydrogen partial pressure. The resulting material is phase-separated and distilled to provide jet fuel and diesel oil product meeting commercial and military specifications.
    Type: Grant
    Filed: February 9, 1981
    Date of Patent: August 17, 1982
    Assignee: Hydrocarbon Research, Inc.
    Inventor: John G. Kunesh
  • Patent number: 4342641
    Abstract: Improved method for maximizing jet fuel from shale oil involves hydrotreating the treated oil at a temperature of about 600.degree.-650.degree. F. in the presence of a catalyst having a relatively low metal content and then hydrotreating the oil at a temperature in excess of about 800.degree. F. in the presence of a catalyst having a relatively high metal content. A 480.degree. F. minus boiling point fraction fractionated from the foregoing process can meet JP-4 jet fuel specifications. Hydrocracking the 480.degree. F. plus boiling point fraction results in substantial additional quantities of jet fuel.
    Type: Grant
    Filed: November 18, 1980
    Date of Patent: August 3, 1982
    Assignees: Sun Tech, Inc., Hydrocarbon Research, Inc.
    Inventors: Henry E. Reif, Peter Maruhnic, Michael C. Chervenak
  • Patent number: 4338472
    Abstract: Alditols such as 15-40 W % sorbitol solution in water are catalytically hydrocracked in a fixed bed catalytic reaction process using an active nickel catalyst to produce at least about 30 W % conversion to glycerol and glycol products. The feedstream pH is controlled to between 7 and 14 by adding a basic promotor material such as calcium hydroxide to prevent damage to the catalyst. Useful reaction zone conditions are 400.degree.-500.degree. F. temperature, 1200-2000 psig hydrogen partial pressure, and liquid hourly space velocity of 1.5 to 3.0. To maintain desired catalyst activity and product yields, the catalyst is regenerated to provide catalyst age within the range of 20-200 hours. The reaction products are separated in distillation steps at successively lower pressures, and unconverted alditol feed is recycled to the reaction zone for further hydrogenolysis to produce 80-95 W % glycerol product.
    Type: Grant
    Filed: January 21, 1981
    Date of Patent: July 6, 1982
    Assignee: Hydrocarbon Research, Inc.
    Inventor: Amalesh K. Sirkar