Patents Assigned to HYLIION INC.
  • Patent number: 11936017
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: March 19, 2024
    Assignee: Hyliion Inc.
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Patent number: 11932232
    Abstract: Through-the-road (TTR) hybrid designs using control strategies such as an equivalent consumption minimization strategy (ECMS) or an adaptive ECMS are implemented at the supplemental torque delivering electrically-powered drive axle (or axles) in a manner that follows operational parameters or computationally estimates states of the primary drivetrain and/or fuel-fed engine, but does not itself participate in control of the fuel-fed engine or primary drivetrain. BSFC type data particular to the paired-with fuel-fed engine allows an ECMS implementation (or other similar control strategy) to adapt to efficiency curves for the particular fuel-fed engine and to improve overall efficiencies of the TTR hybrid configuration.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: March 19, 2024
    Assignee: Hyliion Inc.
    Inventors: Roger Richter, Jamie Noland, Morgan Culbertson
  • Patent number: 11904697
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a trailer, a tractor-trailer configuration, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: February 20, 2024
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Eric Weber
  • Patent number: 11884124
    Abstract: A system and method for adjusting a drivetrain comprising an e-axle on a vehicle comprises accessing route data and compressing the route data into a plurality of linearized segments. Each segment is determined by analyzing points along the route to determine when a set of route data points indicates an uphill, downhill, or flat segment. Using the segments, drivetrain configuration information for a vehicle and a weight of the vehicle, embodiments determine a performance plan that is tailored to the vehicle, including raising the e-axle to reduce rolling resistance on some segments and lowering the e-axle for some segments for increased power for acceleration, improved braking, or increased regenerative capabilities.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: January 30, 2024
    Assignee: Hyliion Inc.
    Inventor: George James Noland
  • Patent number: 11876236
    Abstract: A vehicle with a hybrid drivetrain including a fuel-fed engine coupled to a first drive axle, an electric motor coupled to a second drive axle and an APU for providing electrical power at stopover locations, and further including a controller for determining a location of the vehicle, a location of a stopover location, determining a target SOC of a battery for operating the APU at the stopover location and operating a hybrid control system to provide the target SOC for the vehicle at the stopover location.
    Type: Grant
    Filed: November 18, 2022
    Date of Patent: January 16, 2024
    Assignee: Hyliion Inc.
    Inventors: Roger Richter, Morgan Culbertson
  • Patent number: 11833905
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a trailer, a tractor-trailer configuration, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: December 5, 2023
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Eric F. Weber
  • Patent number: 11766951
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: September 26, 2023
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Wilson Sa, Morgan Culbertson, Eric Schmidt, Roger Richter
  • Patent number: 11527799
    Abstract: A vehicle with a hybrid drivetrain including a fuel-fed engine coupled to a first drive axle, an electric motor coupled to a second drive axle and an APU for providing electrical power at stopover locations, and further including a controller for determining a location of the vehicle, a location of a stopover location, determining a target SOC of a battery for operating the APU at the stopover location and operating a hybrid control system to provide the target SOC for the vehicle at the stopover location.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: December 13, 2022
    Assignee: HYLIION INC.
    Inventors: Roger Richter, Morgan Culbertson
  • Patent number: 11522236
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: December 6, 2022
    Assignee: HYLIION INC.
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Patent number: 11505030
    Abstract: An electric drivetrain for installation in a vehicle chassis. A generator coupled to an engine generates electric power for charging an array of batteries. The vehicle, including components and subsystems, may be powered electrically from the batteries, allowing the engine and generator to be easily replaced or customized for an industry, geographic region, fuel type, or a set of emission requirements. A thermal management system may determine a battery temperature for the set of batteries and cause one or more of a coolant system, a refrigerant system, an exhaust gas system or an ambient air heat exchanger to add heat to the set of batteries or transfer heat away from the set of batteries.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: November 22, 2022
    Assignee: HYLIION INC.
    Inventors: Thomas Healy, Patrick Sexton, Robert Butler, Brian Schoolcraft
  • Patent number: 11479144
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: October 25, 2022
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Wilson Sa, Morgan Culbertson, Eric Schmidt, Roger Richter
  • Patent number: 11370292
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a trailer, a tractor-trailer configuration, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: September 7, 2020
    Date of Patent: June 28, 2022
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Eric Weber
  • Patent number: 11351979
    Abstract: Through-the-road (TTR) hybrid designs using control strategies such as an equivalent consumption minimization strategy (ECMS) or an adaptive ECMS are implemented at the supplemental torque delivering electrically-powered drive axle (or axles) in a manner that follows operational parameters or computationally estimates states of the primary drivetrain and/or fuel-fed engine, but does not itself participate in control of the fuel-fed engine or primary drivetrain. BSFC type data particular to the paired-with fuel-fed engine allows an ECMS implementation (or other similar control strategy) to adapt to efficiency curves for the particular fuel-fed engine and to improve overall efficiencies of the TTR hybrid configuration.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: June 7, 2022
    Assignee: Hyliion Inc.
    Inventors: Roger Richter, Jamie Noland, Morgan Culbertson
  • Patent number: 11325498
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: October 31, 2020
    Date of Patent: May 10, 2022
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Wilson Sa, Morgan Culbertson, Eric Schmidt, Roger Richter
  • Patent number: 11305633
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a trailer, a tractor-trailer configuration, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: April 19, 2022
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Eric Weber
  • Patent number: 11305634
    Abstract: A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a trailer, a tractor-trailer configuration, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
    Type: Grant
    Filed: September 7, 2020
    Date of Patent: April 19, 2022
    Assignee: Hyliion Inc.
    Inventors: Thomas Joseph Healy, Eric Weber
  • Patent number: 11158890
    Abstract: A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: October 26, 2021
    Assignee: Hyliion Inc.
    Inventors: David Scott Thomas, Alex Ho Yang, Timothy Hughes
  • Patent number: 11094988
    Abstract: Systems and methods to control recapture and use of energy to provide an APU include a vehicle having an electrically powered drive axle to provide supplemental torque to the vehicle to supplement primary motive forces applied through a separate drivetrain powered by a fuel-fed engine of the vehicle. The vehicle further includes an energy store to supply the electrically powered drive axle with electrical power or receive energy recovered using the electrically powered drive axle. The vehicle also includes the APU coupled to receive electrical power from the energy store for stopover operation and without idling of the fuel-fed engine. Further, the vehicle includes a hybrid control system for managing, based on an estimated travel time to a stopover location, an SoC of the energy store while the vehicle travels over a roadway to provide a target SoC of the energy store when the vehicle arrives at the stopover location.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: August 17, 2021
    Assignee: Hyliion Inc.
    Inventors: Roger Richter, Morgan Culbertson
  • Patent number: 11091133
    Abstract: Systems and methods for immobilization of a vehicle include a remote device coupled to a network, the remote device including a transceiver, and a vehicle including a communication interface coupled to the network, the communication interface configured to provide telematics data to, and receive commands from, the transceiver. The system further includes an energy store on the vehicle, the energy store configured to supply electrical power to the communication interface. In some embodiments, at least one of the commands received from the transceiver is configured to immobilize the vehicle. In some cases, the at least one command received from the transceiver is configured to release air pressure in an air line of the vehicle to actuate a plurality of air brakes on the vehicle, or to actuate a wheel-lock mechanism within an electrically powered drive axle on the vehicle.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: August 17, 2021
    Assignee: Hyliion Inc.
    Inventor: Thomas Joseph Healy
  • Patent number: 11046192
    Abstract: An energy store tank assembly includes a tank adapted for mounting to a frame of a tractor-trailer vehicle by a mounting bracket. The mounting bracket is coupled to the frame, and the mounting bracket extends around, and in contact with, a circumference of the tank to secure the tank to the frame. The energy store tank assembly further includes an energy store disposed within the tank, the energy store configured to supply electrical power to the tractor-trailer vehicle in a first mode of operation and further configured to receive energy from the tractor-trailer vehicle in a second mode of operation. In some embodiments, the tank includes an electrical interface through which the energy store supplies the electrical power to the tractor-trailer vehicle in the first mode of operation and through which the energy store receives energy from the tractor-trailer vehicle in the second mode of operation.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: June 29, 2021
    Assignee: Hyliion Inc.
    Inventor: Phil Aufdencamp