Patents Assigned to HyperNex, Inc.
  • Patent number: 6909772
    Abstract: An apparatus and method for mapping film thickness of textured polycrystalline thin films. Multiple sample films of known thicknesses are provided, and each is irradiated by x-ray at a measurement point to generate a diffraction image that captures a plurality of diffraction arcs. Texture information (i.e., pole densities) of each sample film is calculated based on multiple incomplete pole figures collected from the diffraction image and used to correct the x-ray diffraction intensities obtained from such sample film. Corrected and integrated diffraction intensities of the sample films are then correlated to respective known film thicknesses of such films, and the correlation so determined can be used to map the film thickness of a textured polycrystalline thin film of unknown thickness, based on the corrected and integrated diffraction intensity calculated for such thin film.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: June 21, 2005
    Assignees: HyperNex, Inc., International Business Machines Corp.
    Inventors: Krzysztof J. Kozaczek, David S. Kurtz, Paul R. Moran, Roger I. Martin, Patrick W. Dehaven, Kenneth P. Rodbell, Sandra G. Malhotra
  • Patent number: 6882739
    Abstract: An apparatus and method for performing rapid grain size analysis on a textured polycrystalline material, by generating average grain size and grain size distribution data from x-ray diffraction data of such material. Raw diffraction data is obtained by capturing a plurality of diffraction arcs within a single data capture frame. The raw diffraction data is digitally registered; (3) and the registered diffraction data is filtered to remove background noise, exclude diffraction overlaps or truncations, and compensate for biased data obtained from regions of highly preferred orientations. Average grain size and grain size distribution data are then correlated with the filtered diffraction data. The apparatus for acquiring raw diffraction data includes a collimated x-ray source having means for adjusting beam size and divergence of the x-ray generated, a 2-dimensional area detector for registering diffracted x-ray, and a sample motion assembly for moving the sample in the sample plane.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: April 19, 2005
    Assignee: HyperNex, Inc.
    Inventors: David S. Kurtz, Kryzsztof J. Kozaczek, Paul R. Moran
  • Patent number: 6792075
    Abstract: An apparatus and method for mapping film thickness of one or more textured polycrystalline thin films. Multiple sample films of known thickness are provided. Each sample film is irradiated by x-ray at a measurement point to generate a diffraction image that captures a plurality of diffraction arcs. Texture information (i.e., pole densities) of the sample film, is calculated based on incomplete pole figures collected on the diffraction image and used to correct the x-ray diffraction intensities from such sample. The corrected diffraction intensities are integrated for each sample film, and then used for constructing a calibration curve that correlates diffraction intensities with respective known film thickness of the sample films. The film thickness of a textured polycrystalline thin film of unknown thickness can therefore be mapped on such calibration curve, using a corrected and integrated diffraction intensity obtained for such thin film of unknown thickness.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: September 14, 2004
    Assignee: HyperNex, Inc.
    Inventors: Krzysztof J. Kozaczek, David S. Kurtz, Paul R. Moran, Roger I. Martin, Patrick W. Dehaven, Kenneth P. Rodbell, Sandra G. Malhotra
  • Patent number: 6678347
    Abstract: A method for quantitatively determining the phase composition of a sample mixture that comprises two or more textured polycrystalline materials, based on corrected and integrated x-ray diffraction intensities. The effect of texture has been analytically eliminated from such corrected and integrated x-ray diffraction intensities, based on the texture information obtained from the sample mixture.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: January 13, 2004
    Assignee: HyperNex, Inc.
    Inventors: Krzysztof J. Kozaczek, David S. Kurtz, Paul R. Moran, Roger I. Martin
  • Patent number: 6301330
    Abstract: An apparatus and method for performing rapid, high-resolution polycrystalline crystallographic texture analysis, by calculating an Orientation Distribution Function (ODF) from partial pole figures obtained from x-ray diffraction measurements on large samples, e.g., 200 millimeter diameter wafers. The measurement apparatus includes a 2-D area x-ray detector and a collimated x-ray source arranged in a specific, fixed spatial relationship dependant on the properties of the sample to be measured, and also includes a particular wafer motion assembly. The wafer motion assembly includes three mutually orthogonal rectilinear translation stages, and a &phgr; rotation stage mounted thereon, as an uppermost motion stage, with its range restricted to 180° of rotation.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: October 9, 2001
    Assignee: HyperNex, Inc.
    Inventors: David S. Kurtz, Krzysztof J. Kozaczek, Paul R. Moran
  • Patent number: 6058160
    Abstract: An x-ray diffraction system for determining stress in integrated circuit materials includes a source of x-rays (3) that are directed toward a sample holding mechanism for diffracting from the test sample (8). An x-ray detector (14) is arranged for detecting high back reflected diffracted x-ray intensity data representing stress in the test sample. A two-dimensional detection and storage arrangement (24) is arranged for detecting and storing the data representing stress in the test sample. A data processor (2) accesses the stored data from the two-dimensional detection and storage arrangement and processes the data representing stress in the test sample to determine stress in the test sample.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: May 2, 2000
    Assignee: Hypernex, Inc.
    Inventor: David S. Kurtz