Abstract: A nozzle of a plasma arc torch is provided. The nozzle is configured to reduce fluid pressure surging in a nozzle plenum. The nozzle comprises a nozzle body having a proximal end and a distal end. The nozzle plenum is defined between the nozzle body and an electrode of the plasma arc torch. The nozzle includes a nozzle plenum gas inlet located at the proximal end of the nozzle body, a plasma gas exit orifice located at the distal end of the nozzle body, a plasma gas passageway fluidly connecting the nozzle plenum gas inlet to the plasma gas exit orifice, and an isolation chamber fluidly connected to the plasma gas passageway and the nozzle plenum. The isolation chamber is sized to receive a volume of substantially stagnant gas to reduce the fluid pressure surging in the nozzle plenum.
Abstract: A material processing system for performing a processing operation includes a processor that receives information from a user relating to a proposed processing operation to be performed by the material processing system. The processor determines, responsive to the information received from the user, two or more configurations of consumable components for performing the proposed processing operation and estimates processing performance capabilities associated with using each configuration of consumable components. An interactive display presents the estimated processing performance capabilities to the user for selection.
Type:
Grant
Filed:
February 27, 2015
Date of Patent:
November 14, 2017
Assignee:
Hypertherm, Inc.
Inventors:
Steven Bertken, E. Michael Shipulski, Peter A. Officer
Abstract: A shield for a plasma arc torch is configured to protect consumable components of the plasma arc torch from splattering molten metal. The shield includes a generally conical unitary body defining (i) an interior surface to form a gas flow path with an outer surface of an adjacent nozzle of the plasma arc torch, and (ii) an exterior surface. The body includes (i) a distal first portion defining an exit orifice; and (ii) a proximal second portion formed of a flange sharing a common surface with the distal first portion. The shield also includes a seal assembly disposed on the common surface to retain the liquid coolant flow along the proximal second portion.
Abstract: A plasma arc cutting system includes a power supply and a plasma torch attachable to the power supply. The plasma torch generates a plasma arc for cutting a workpiece. A reader is associated with the plasma torch. The reader is capable of reading stored data from an identification device located on a cartridge or a consumable component of the plasma arc cutting system. A controller is within the plasma arc cutting system and in communication with the power supply. The controller is capable of automatically establishing operating parameters of the plasma arc cutting system based upon the data stored on the identification device. An override feature allows a user of the plasma arc cutting system to override the automatically established operating parameters of the torch and to input user selected operating parameters.
Type:
Grant
Filed:
September 15, 2014
Date of Patent:
October 10, 2017
Assignee:
Hypertherm, Inc.
Inventors:
Junsong Mao, Michael F. Kornprobst, Brett A. Hansen, E. Michael Shipulski
Abstract: A consumable set is provided that is usable in a plasma arc torch to direct a plasma arc to a processing surface of a workpiece. The consumable set comprises a nozzle and an alignment surface. The nozzle includes: 1) a nozzle body defining a longitudinal axis extending therethrough, and 2) a nozzle exit orifice disposed in the nozzle body for constricting the plasma arc. The nozzle exit orifice defines an exit orifice axis oriented at a non-zero bevel angle relative to the longitudinal axis. The alignment surface is generally parallel to the exit orifice axis and dimensioned to align the exit orifice such that the plasma arc impinges orthogonally on the processing surface of the workpiece. The alignment surface is configured to lay at least substantially flush against a guiding surface angled relative to the processing surface of the workpiece.
Type:
Grant
Filed:
November 14, 2016
Date of Patent:
October 3, 2017
Assignee:
Hypertherm, Inc.
Inventors:
Peter Twarog, Clifford G. Darrow, E. Michael Shipulski, Martin Higgens
Abstract: A power contact for a liquid-cooled plasma arc cutting system is provided. The cutting system includes a torch body and a lower torch assembly. The power contact comprises a substantially hollow body including an upper portion and a lower portion, and an external surface of the upper portion of the hollow body configured to matingly engage the torch body. The power contact further includes a thread region disposed on an internal surface of the hollow body. The thread region is configured to retain an electrode holder of the lower torch assembly of the plasma arc cutting system to matingly engage the lower torch assembly and secure the lower torch assembly to the torch body.
Abstract: A plasma arc torch is provided for use in a plasma cutting system. The plasma arc torch includes a torch body for conducting electrical current. The torch body includes a torch tip configured to pass the electrical current to at least one consumable component connected to the tip. The plasma arc torch also includes at least one antenna positioned relative to the torch tip. The antenna is used to wirelessly detect the presence of the at least one consumable component. The plasma arc torch further includes a detection circuit configured to permit passing of the electrical current from the torch tip to the at least one consumable component based on at least the wireless detection.
Type:
Grant
Filed:
February 29, 2016
Date of Patent:
August 22, 2017
Assignee:
Hypertherm, Inc.
Inventors:
Michael Hoffa, Nicholas A. Sanders, E. Michael Shipulski
Abstract: A swirl ring component of a contact start plasma arc torch is provided. The swirl ring component includes a hollow body formed of a front portion and a rear portion along a longitudinal axis and defining an exterior surface and an interior surface. The swirl ring component also includes one or more gas passageways extending from the exterior surface to the interior surface in the front portion of the hollow body and a resilient element disposed relative to the interior surface in the rear portion of the hollow body and configured to pass at least a pilot arc current to an electrode body. The swirl ring component further includes a shoulder portion configured to retain the resilient element in the hollow body.
Type:
Grant
Filed:
October 18, 2016
Date of Patent:
August 15, 2017
Assignee:
Hypertherm, Inc.
Inventors:
Jonathan P. Mather, Stephen T. Eickhoff, Jesse A. Roberts
Abstract: In some aspects, consumables for a material processing head can include a body that is substantially axially symmetric about a central longitudinal axis; and a ring-shaped data tag attached to the body, the data tag having a central axis that is substantially coaxial to the central longitudinal axis of the body, the data tag having a conductive coil formed around the central axis of the data tag.
Abstract: An electrode is provided for use in a plasma arc torch. The electrode includes a body having an elongated forward portion and a ring-shaped aft portion. The forward portion is configured to provide an electrically conductive path from the distal end to the proximal end. The forward portion comprises a first conductive material. The ring-shaped aft portion, defining a hollow center, is configured to substantially surround a portion of the forward portion when the forward portion is located inside of the hollow center. The aft portion includes a pneumatic reaction region for receiving a biasing flow of a pressurized gas. The aft portion comprises a second material. In some embodiments, the first conductive material is the same as the second material.
Type:
Grant
Filed:
October 14, 2014
Date of Patent:
May 30, 2017
Assignee:
Hypertherm, Inc.
Inventors:
Clifford Glenn Darrow, Carey Chen, Nicholas A. Sanders
Abstract: A system is provided for configuring a delivery device of a cutting or welding apparatus. The system includes a determination module and a mobile computing device. The determination module is configured to determine at least one desired component of the delivery device or a value for at least one operating parameter of the cutting or welding apparatus. The mobile computing device includes a receiver, a reader and a processor. The receiver is configured to receive information from the determination module including at least one of i) identification of the desired component or ii) the value of the operating parameter. The reader is configured to read an element associated with a selected component, where the element provides indicia of at least one characteristic of the selected component. The processor is configure to approve the selected component for assembly into the delivery device.
Abstract: A connector component is provided for assembly into a torch. The connector component comprises a body that includes a proximal end and a distal end disposed along a longitudinal axis. At least two thread regions are disposed radially about the longitudinal axis on a surface of the body near the proximal end. Each thread region includes at least two parallel threads disposed on the surface of the body. In addition, at least two smooth regions are each disposed radially about the longitudinal axis between a pair of thread regions on the surface of the body.
Type:
Grant
Filed:
September 19, 2013
Date of Patent:
May 2, 2017
Assignee:
Hypertherm, Inc.
Inventors:
Jonathan P. Mather, Jeffrey R. Cornish, Geoffrey W. Smith, Boris Mandadzhiev, Harshawardhan Jogdand, Shawn Laflamme, George Caccavaro
Abstract: A method of operating a plasma arc torch system is provided. A first plasma gas supply source, a second plasma gas supply source, and a control unit are provided. A first plasma gas composition is flowed through a first plasma gas flow path, and a plasma arc is generated using the first plasma gas composition. After arc generation, the plasma gas composition is changed to a second plasma gas composition, and the plasma gas flow path is changed to a second plasma gas flow path, wherein the second plasma gas flow path is different from the first plasma gas flow path. The plasma arc is sustained using the second plasma gas composition. The first and second plasma gas flow paths are both at least partially disposed within the plasma arc torch.
Abstract: Systems and methods can be provided to use an automated cutting system to identify an edge or multiple edges of a workpiece. An automated cutting system receives trace data for a test path to be traced over a workpiece. The automated cutting system includes a torch from which gas is flowed. The torch is controlled in accordance with the trace data to trace the test path over the workpiece. A set of back pressure values are obtained by monitoring a back pressure of the gas during the tracing of the path. The back pressure values are mapped to a set of coordinates. An edge of the workpiece is identified using the set of back pressure values and the set of coordinates.
Abstract: In some aspects, methods for operating a plasma cutting system can include initiating an arc between a set of consumable components disposed in a torch of the plasma cutting system, the set of consumable components including a first consumable component and a second consumable component, detecting an operational characteristic of the arc, and analyzing the operational characteristic to identify at least one consumable component of the set of consumable components.
Abstract: A nozzle for a plasma arc torch is provided. The nozzle includes a substantially hollow, elongated nozzle body capable of receiving an electrode, the body defining a longitudinal axis, a distal end, and a proximal end. The nozzle also includes a swirl sleeve attachable to an interior surface of the nozzle body, the swirl sleeve configured to impart a swirling motion to a gas introduced to the nozzle. The nozzle additionally includes a nozzle tip connected to the proximal end of the nozzle body, a nozzle shield, and an insulator configured to connect the nozzle tip and the nozzle shield to electrically insulate the nozzle shield and the nozzle tip from one another while transferring thermal energy therebetween.
Type:
Grant
Filed:
January 30, 2015
Date of Patent:
January 31, 2017
Assignee:
Hypertherm, Inc.
Inventors:
E. Michael Shipulski, Nicholas A. Sanders, Jay Jason, Jonathan P. Mather, Peter J. Twarog, Clifford Glenn Darrow
Abstract: A power supply assembly for a plasma arc torch is provided. The power supply assembly includes an input circuit, an energy storage device, a torch connector and an output circuit. The input circuit is configured to produce a first output signal. The energy storage device is electrically connected to the input circuit for receiving a charge signal therefrom. The energy storage device is capable of producing a second output signal. The torch connector is electrically connected to the input circuit and the energy storage device for receiving the first and second output signals through the output circuit. The torch connector is configured to supply at least one of the first or second output signal to the plasma arc torch to sustain a plasma arc.
Abstract: A method is provided for operating a plasma arc torch system having a power supply and a plasma arc torch. The method includes supplying power to the power supply from a battery. The battery provides at least a portion of the power to generate a plasma arc by the plasma arc torch. The method also includes communicating a first signal, indicating at least one parameter of the battery, between the battery and a control unit of the power supply, generating a second signal, by the control unit, based on the at least one parameter of the battery, and controlling, using the control circuit, operation of the plasma arc torch based on the second signal.
Abstract: In some aspects, multi-metallic emissive inserts shaped to be disposed within an electrode for a plasma arc torch electrode can include an exposed emitter surface at a distal end of the emissive insert to emit a plasma arc from the electrode, wherein the emissive insert comprises a first emissive material and about 8 weight percent to about 50 weight percent yttrium.
Type:
Grant
Filed:
September 29, 2014
Date of Patent:
December 6, 2016
Assignee:
Hypertherm, Inc.
Inventors:
Markus Wittmann, John Peters, E. Michael Shipulski