Abstract: A method of controlling a turbine of a floating wind turbine structure to reduce fatigue of moorings of the floating wind turbine structure includes curtailing the turbine based on a pitching motion of the floating wind turbine structure and on a wind direction at the floating wind turbine structure relative to an orientation of the moorings of the floating wind turbine structure. Optionally, the curtailment may be further based on a degree of displacement of the floating wind turbine structure from a reference location.
Abstract: A controller for a floating wind turbine is adapted to cause the wind turbine to extract energy from wave-induced motion of the turbine. The controller controls the rotor speed of the turbine by controlling the torque of the load presented to the rotor such that the rotor speed varies in response to wave-induced motion.
Abstract: The present invention relates to a blade pitch controller for a floating wind turbine structure, wherein the floating wind turbine structure may include a support structure supporting a rotor having a number of blades. The controller may include standard blade pitch control means and active damping means. The standard blade pitch control means is arranged to control a blade pitch using a transfer function between a rotor speed error and the blade pitch. The active damping means is arranged to further control the blade pitch on the basis of a speed of a point on the wind turbine structure by converting the speed of a point on the wind turbine structure into a rotor speed error and using the same transfer function that is used in the standard blade pitch control means to convert the rotor speed error into a correction to the blade pitch.
Abstract: A controller for a floating wind turbine is adapted to cause the wind turbine to extract energy from wave-induced motion of the turbine. The controller controls the rotor speed of the turbine by controlling the torque of the load presented to the rotor such that the rotor speed varies in response to wave-induced motion.