Patents Assigned to i-Sens, Inc.
-
Patent number: 9753004Abstract: The present invention relates to an electrochemical biosensor with improved hematocrit measurement accuracy for measuring blood glucose. According to the present invention, an electrochemical biosensor including a first electrode part for correcting a measured hematocrit value and a second electrode part for measuring a glucose concentration is effective in improving accuracy of a measured hematocrit value and in more improving accuracy of a measured blood glucose concentration using the measured hematocrit values for correction, because an insulation cover is made thinner than a working electrode and an auxiliary electrode, so that areas of a first working electrode and a first auxiliary electrode of the first electrode part exposed to a blood sample become equal; a distance between the first working electrode and the second working electrode becomes constant; and electrode areas are maintained constantly by the insulation cover even when a positioning error occurs during printing.Type: GrantFiled: December 1, 2014Date of Patent: September 5, 2017Assignee: I-Sens, Inc.Inventors: Myeong Ho Lee, Moon Hwan Kim, Ung Ki Lee, Han Be Park, Sung-Kwon Jung, Hakhyun Nam, Geun Sig Cha
-
Patent number: 9351678Abstract: A lancet holder includes a holder body having a lancet seat at one end to mount a lancet and receiving the lancet and elastic fixing portions arranged in pairs to face each other on the inner side of the holder body so that the lancet received in the holder body is vertically held, and elastically fixing the lancet.Type: GrantFiled: September 20, 2011Date of Patent: May 31, 2016Assignee: I-SEN, INC.Inventors: Geun Sig Cha, Hakhyun Nam, Eun-Jong Cha, Kyung-Ah Kim
-
Patent number: 8940233Abstract: A cartridge for an apparatus for analyzing blood chemistry includes an apparatus frame having a compartment; a cartridge that is inserted into the compartment of the apparatus frame and includes a sensor card, a solution valve unit, and a blood introducing unit; a controller that receives a signal generated from the sensor card and processes the signal; a lever for the blood introducing unit connected to the apparatus frame; a power transmitting unit that is provided to the apparatus frame and transmits power of the lever for the blood introducing unit to open/close the blood introducing unit of the cartridge; a solution transporting unit that is provided to the apparatus frame and transports the solutions; and a driving unit that actuates the solution valve unit of the cartridge by the controller and opens or closes the tubing flowing of the solutions.Type: GrantFiled: October 30, 2008Date of Patent: January 27, 2015Assignee: I-Sens, Inc.Inventors: Tae Young Kang, Heejun Lee, Jeonghan Ha, Jungwon Shin, Hakhyun Nam, Geun Sig Cha
-
Patent number: 8337683Abstract: Disclosed is a microfluidic sensor complex structure comprising a lower plate, a middle plate and an upper plate. A reference electrode, a working electrode and an electrode connection are formed on the lower plate. The middle plate comprises a microfluidic channel passage therein. The upper plate is overlaid on the middle plate so as to induce a capillary phenomenon on the microfluidic channel passage formed on in the middle plate. The microfluidic sensor complex structure allows the motion of a sample to be driven only by a capillary phenomenon, without additional operation, and allows an immune response, washing, and electrochemical analysis in one round once a sample is introduced thereinto. Hence, it requires only a short time period for measurement, is convenient to handle, and shows sensitivity and selectivity. Also, it can be produced on a mass scale because it can be formed of typical organic polymers using a simple method.Type: GrantFiled: July 24, 2008Date of Patent: December 25, 2012Assignees: i-Sens, Inc., Nano-Ditech CorporationInventors: Moon Hee Choi, Seung Hyeun Jung, Young Hoon Kim, Joo-Heon Park, Hakhyun Nam, Geun Sig Cha
-
Patent number: 8277635Abstract: Disclosed herein is an electrochemical biosensor measuring device which comprises at least two photodiodes for emitting light beams at regular time intervals in a sequential manner, with the insertion of an electrochemical biosensor thereto, and a detector for sensing the emitted light beams, thereby identifying the production lot information recorded on a production lot information identification portion on the electrochemical biosensor. Thus, the device enjoys economic advantages of not requiring a high-priced optical filter in detecting the light absorbed through or reflected from the production identification information recorded in biosensor and a complicated software algorithm to recover the production lot information.Type: GrantFiled: February 26, 2008Date of Patent: October 2, 2012Assignee: I-Sens, Inc.Inventors: Moon Hwan Kim, Keun Ki Kim, Gang Cui, Hakhyun Nam, Geun Sig Cha
-
Patent number: 7258769Abstract: There is provided electrochemical biosensors with a sample introducing part, comprising a sample introducing passage, an air discharge passage, and a void. The sample introducing passage communicates with the air discharge passage, and the void is formed at the point of communication. Also, disclosed is the electrochemical biosensor with the said sample introducing part and a fluidity determining electrode.Type: GrantFiled: April 17, 2002Date of Patent: August 21, 2007Assignee: I-Sens, Inc.Inventors: Gang Cui, Ju-Yong Kim, Moon-Hwan Kim
-
Patent number: 6746583Abstract: There is provided a microchip-based differential-type carbon dioxide gas sensor for detecting dissolved carbon dioxide levels. It functions with at least one working electrode composed of an unbuffered hydrogel membrane containing a certain amount of sodium bicarbonate and a pH-sensitive gas-permeable membrane; and a reference electrode composed of a buffered hydrogel membrane and a pH-sensitive gas-permeable membrane. The unbuffered hydrogel membrane contains carbonic anhydrase, which reduces the time period for the hydration of carbon dioxide, thereby allowing the quick measurement of the level of carbon dioxide. In addition to being significantly improved in stabilization, sensing, and recovering time periods, the differential-type carbon dioxide gas sensor can be fabricated in small sizes and quickly measure levels of carbon dioxide dissolved in sample solution.Type: GrantFiled: June 8, 2001Date of Patent: June 8, 2004Assignee: i-Sens, Inc.Inventors: Jae Seon Lee, Jae Ho Shin, Min Hyung Lee, Hakhyun Nam, Geun Sig Cha
-
Patent number: 6726818Abstract: Disclosed is a porous membrane built-in biosensor comprising (a) at least one substrate; (b) an electrode layer patterned on the substrate, consisting of an electrode system and a circuit connector; (c) an insulator, formed on parts of the electrode layer, for electrically separating the electrode system from a circuit connector; and (d) a porous membrane via the insulator on the electrode system, wherein, when a whole blood sample is introduced to the biosensor, the whole blood sample is separated into its components during the chromatographic motion through the porous membrane so that only blood plasma can be contacted with the electrode system. The porous membrane built-in biosensor is provided with a sample inlet, which allows samples to be introduced in a constant quantity to the biosensors porous membranes without pretreatment.Type: GrantFiled: July 13, 2001Date of Patent: April 27, 2004Assignee: i-Sens, Inc.Inventors: Gang Cui, Jae Hyun Yoo, Byung Wook Woo, Moon Hwan Kim, Hyun Joon Oh, Hakhyun Nam, Geun Sig Cha
-
Patent number: 6663756Abstract: Disclosed is a microchip-based differential-type potentiometric oxygen gas sensor, which comprises a working electrode and a reference electrode. The working electrode is composed of a cobalt-plated electrode, a buffered hydrogel, and an ion sensitive gas permeable membrane while the reference electrode is composed of an oxygen non-sensitive silver chloride electrode and the same ion-selective gas-permeable membrane of working electrode. By taking advantage of the corrosion potential, the microchip-based oxygen gas sensor can accurately and quickly detect the content of dissolved oxygen in a sample solution. With this structure, the oxygen gas sensor is applied to a microchip-based all potentiometric multi-sensor capable of detecting two or more ions and gas species on a single chip.Type: GrantFiled: October 18, 2001Date of Patent: December 16, 2003Assignee: i-Sens Inc.Inventors: Dong Kwon Lee, Tae Young Kang, Sung Hyuk Choi, Jae Seon Lee, Hakhyun Nam, Geun Sig Cha
-
Patent number: 6509148Abstract: Disclosed is a method for fabricating biosensors, using hydrophilic polyurethane. Bio-active reagents, including enzymes, antibodies, antigens, cells and receptors, are mixed with hydrophilic polyurethane and the mixture is directly coated over a signal transducer to form a sensing film which serves as a signal detector. The method using hydrophilic polyurethane allows the simplification of the fabrication of biosensors without conducting complicated chemical reactions and washing steps, such as crosslinking. The bio-active reagent entrapped within the hydrophilic polyurethane film can retains its high activity for an extended period of time and the intrinsic potentiometric response of the underlying ion-selective polymeric membrane is not affected by the bio-active reagent immobilized polyurethane film coated on its sensing surface. Therefore, the biosensors are superior in specificity, selectivity, and stability.Type: GrantFiled: February 10, 2000Date of Patent: January 21, 2003Assignee: i-Sens, Inc.Inventors: Geun Sig Cha, Hakhyun Nam, Jae Ho Shin